Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38667829

RESUMEN

Different frequencies amongst codons that encode the same amino acid (i.e. synonymous codons) have been observed in multiple species. Studies focused on uncovering the forces that drive such codon usage showed that a combined effect of mutational biases and translational selection works to produce different frequencies of synonymous codons. However, only few have been able to measure and distinguish between these forces that may leave similar traces on the coding regions. Here, we have developed a codon model that allows the disentangling of mutation, selection on amino acids and synonymous codons, and GC-biased gene conversion (gBGC) which we employed on an extensive dataset of 415 chordates and 191 arthropods. We found that chordates need 15 more synonymous codon categories than arthropods to explain the empirical codon frequencies, which suggests that the extent of codon usage can vary greatly between animal phyla. Moreover, methylation at CpG sites seems to partially explain these patterns of codon usage in chordates but not in arthropods. Despite the differences between the two phyla, our findings demonstrate that in both, GC-rich codons are disfavored when mutations are GC-biased, and the opposite is true when mutations are AT-biased. This indicates that selection on the genomic coding regions might act primarily to stabilize its GC/AT content on a genome-wide level. Our study shows that the degree of synonymous codon usage varies considerably among animals, but is likely governed by a common underlying dynamic.


Asunto(s)
Artrópodos , Uso de Codones , Selección Genética , Animales , Artrópodos/genética , Cordados/genética , Mutación , Evolución Molecular , Codón , Modelos Genéticos , Composición de Base , Conversión Génica
2.
Syst Biol ; 72(5): 1119-1135, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366056

RESUMEN

Inference of deep phylogenies has almost exclusively used protein rather than DNA sequences based on the perception that protein sequences are less prone to homoplasy and saturation or to issues of compositional heterogeneity than DNA sequences. Here, we analyze a model of codon evolution under an idealized genetic code and demonstrate that those perceptions may be misconceptions. We conduct a simulation study to assess the utility of protein versus DNA sequences for inferring deep phylogenies, with protein-coding data generated under models of heterogeneous substitution processes across sites in the sequence and among lineages on the tree, and then analyzed using nucleotide, amino acid, and codon models. Analysis of DNA sequences under nucleotide-substitution models (possibly with the third codon positions excluded) recovered the correct tree at least as often as analysis of the corresponding protein sequences under modern amino acid models. We also applied the different data-analysis strategies to an empirical dataset to infer the metazoan phylogeny. Our results from both simulated and real data suggest that DNA sequences may be as useful as proteins for inferring deep phylogenies and should not be excluded from such analyses. Analysis of DNA data under nucleotide models has a major computational advantage over protein-data analysis, potentially making it feasible to use advanced models that account for among-site and among-lineage heterogeneity in the nucleotide-substitution process in inference of deep phylogenies.


Asunto(s)
Modelos Genéticos , Nucleótidos , Animales , Filogenia , Secuencia de Bases , Codón , Aminoácidos/genética , Evolución Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...