Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Pharmacol ; 14: 1243505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089059

RESUMEN

Background: We hypothesize that the poor survival outcomes of end-stage kidney disease (ESKD) patients undergoing hemodialysis are associated with a low filtering efficiency and selectivity. The current gold standard criteria using single or several markers show an inability to predict or disclose the treatment effect and disease progression accurately. Methods: We performed an integrated mass spectrometry-based metabolomic and proteomic workflow capable of detecting and quantifying circulating small molecules and proteins in the serum of ESKD patients. Markers linked to cardiovascular disease (CVD) were validated on human induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Results: We identified dozens of elevated molecules in the serum of patients compared with healthy controls. Surprisingly, many metabolites, including lipids, remained at an elevated blood concentration despite dialysis. These molecules and their associated physical interaction networks are correlated with clinical complications in chronic kidney disease. This study confirmed two uremic toxins associated with CVD, a major risk for patients with ESKD. Conclusion: The retained molecules and metabolite-protein interaction network address a knowledge gap of candidate uremic toxins associated with clinical complications in patients undergoing dialysis, providing mechanistic insights and potential drug discovery strategies for ESKD.

3.
Proteins ; 91(12): 1822-1828, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37697630

RESUMEN

In the ligand prediction category of CASP15, the challenge was to predict the positions and conformations of small molecules binding to proteins that were provided as amino acid sequences or as models generated by the AlphaFold2 program. For most targets, we used our template-based ligand docking program ClusPro ligTBM, also implemented as a public server available at https://ligtbm.cluspro.org/. Since many targets had multiple chains and a number of ligands, several templates, and some manual interventions were required. In a few cases, no templates were found, and we had to use direct docking using the Glide program. Nevertheless, ligTBM was shown to be a very useful tool, and by any ranking criteria, our group was ranked among the top five best-performing teams. In fact, all the best groups used template-based docking methods. Thus, it appears that the AlphaFold2-generated models, despite the high accuracy of the predicted backbone, have local differences from the x-ray structure that make the use of direct docking methods more challenging. The results of CASP15 confirm that this limitation can be frequently overcome by homology-based docking.


Asunto(s)
Proteínas , Programas Informáticos , Conformación Proteica , Simulación del Acoplamiento Molecular , Ligandos , Proteínas/química , Unión Proteica , Sitios de Unión
4.
Nat Protoc ; 18(6): 1814-1840, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37188806

RESUMEN

Antibodies play an important role in the immune system by binding to molecules called antigens at their respective epitopes. These interfaces or epitopes are structural entities determined by the interactions between an antibody and an antigen, making them ideal systems to analyze by using docking programs. Since the advent of high-throughput antibody sequencing, the ability to perform epitope mapping using only the sequence of the antibody has become a high priority. ClusPro, a leading protein-protein docking server, together with its template-based modeling version, ClusPro-TBM, have been re-purposed to map epitopes for specific antibody-antigen interactions by using the Antibody Epitope Mapping server (AbEMap). ClusPro-AbEMap offers three different modes for users depending on the information available on the antibody as follows: (i) X-ray structure, (ii) computational/predicted model of the structure or (iii) only the amino acid sequence. The AbEMap server presents a likelihood score for each antigen residue of being part of the epitope. We provide detailed information on the server's capabilities for the three options and discuss how to obtain the best results. In light of the recent introduction of AlphaFold2 (AF2), we also show how one of the modes allows users to use their AF2-generated antibody models as input. The protocol describes the relative advantages of the server compared to other epitope-mapping tools, its limitations and potential areas of improvement. The server may take 45-90 min depending on the size of the proteins.


Asunto(s)
Furilfuramida , Proteínas , Epítopos , Proteínas/química , Antígenos , Anticuerpos , Mapeo Epitopo
5.
J Am Chem Soc ; 145(13): 7123-7135, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961978

RESUMEN

The design of PROteolysis-TArgeting Chimeras (PROTACs) requires bringing an E3 ligase into proximity with a target protein to modulate the concentration of the latter through its ubiquitination and degradation. Here, we present a method for generating high-accuracy structural models of E3 ligase-PROTAC-target protein ternary complexes. The method is dependent on two computational innovations: adding a "silent" convolution term to an efficient protein-protein docking program to eliminate protein poses that do not have acceptable linker conformations and clustering models of multiple PROTACs that use the same E3 ligase and target the same protein. Results show that the largest consensus clusters always have high predictive accuracy and that the ensemble of models can be used to predict the dissociation rate and cooperativity of the ternary complex that relate to the degrading activity of the PROTAC. The method is demonstrated by applications to known PROTAC structures and a blind test involving PROTACs against BRAF mutant V600E. The results confirm that PROTACs function by stabilizing a favorable interaction between the E3 ligase and the target protein but do not necessarily exploit the most energetically favorable geometry for interaction between the proteins.


Asunto(s)
Proteínas , Ubiquitina-Proteína Ligasas , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas/metabolismo , Ubiquitinación
6.
Nat Commun ; 14(1): 688, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755019

RESUMEN

A proper understanding of disease etiology will require longitudinal systems-scale reconstruction of the multitiered architecture of eukaryotic signaling. Here we combine state-of-the-art data acquisition platforms and bioinformatics tools to devise PAMAF, a workflow that simultaneously examines twelve omics modalities, i.e., protein abundance from whole-cells, nucleus, exosomes, secretome and membrane; N-glycosylation, phosphorylation; metabolites; mRNA, miRNA; and, in parallel, single-cell transcriptomes. We apply PAMAF in an established in vitro model of TGFß-induced epithelial to mesenchymal transition (EMT) to quantify >61,000 molecules from 12 omics and 10 timepoints over 12 days. Bioinformatics analysis of this EMT-ExMap resource allowed us to identify; -topological coupling between omics, -four distinct cell states during EMT, -omics-specific kinetic paths, -stage-specific multi-omics characteristics, -distinct regulatory classes of genes, -ligand-receptor mediated intercellular crosstalk by integrating scRNAseq and subcellular proteomics, and -combinatorial drug targets (e.g., Hedgehog signaling and CAMK-II) to inhibit EMT, which we validate using a 3D mammary duct-on-a-chip platform. Overall, this study provides a resource on TGFß signaling and EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas Hedgehog , Transición Epitelial-Mesenquimal/genética , Proteínas Hedgehog/metabolismo , Células Epiteliales/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
7.
Proteins ; 91(2): 171-182, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36088633

RESUMEN

Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template-based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template-based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x-ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER-Map, has been tested on a widely used antibody-antigen docking benchmark. The results show that PIPER-Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.


Asunto(s)
Anticuerpos , Antígenos , Epítopos/metabolismo , Anticuerpos/química , Antígenos/química , Simulación de Dinámica Molecular , Proteínas/química , Unión Proteica
9.
Chem Commun (Camb) ; 58(78): 10933-10936, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36065962

RESUMEN

Light-activable spatiotemporal control of PROTAC-induced protein degradation was achieved with novel arylazopyrazole photoswitchable PROTACs (AP-PROTACs). The use of a promiscuous kinase inhibitor in the design enables this unique photoswitchable PROTAC to selectively degrade four protein kinases together with on/off optical control using different wavelengths of light.


Asunto(s)
Luz , Ubiquitina-Proteína Ligasas , Proteínas Quinasas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Pirazoles/química , Inhibidores de Proteínas Quinasas/química
10.
Nat Commun ; 13(1): 4043, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831314

RESUMEN

Co-fractionation/mass spectrometry (CF/MS) enables the mapping of endogenous macromolecular networks on a proteome scale, but current methods are experimentally laborious, resource intensive and afford lesser quantitative accuracy. Here, we present a technically efficient, cost-effective and reproducible multiplex CF/MS (mCF/MS) platform for measuring and comparing, simultaneously, multi-protein assemblies across different experimental samples at a rate that is up to an order of magnitude faster than previous approaches. We apply mCF/MS to map the protein interaction landscape of non-transformed mammary epithelia versus breast cancer cells in parallel, revealing large-scale differences in protein-protein interactions and the relative abundance of associated macromolecules connected with cancer-related pathways and altered cellular processes. The integration of multiplexing capability within an optimized workflow renders mCF/MS as a powerful tool for systematically exploring physical interaction networks in a comparative manner.


Asunto(s)
Proteoma , Proteómica , Fraccionamiento Químico , Espectrometría de Masas/métodos , Proteoma/análisis , Proteómica/métodos , Flujo de Trabajo
11.
Acta Crystallogr D Struct Biol ; 78(Pt 6): 690-697, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35647916

RESUMEN

Starting with a crystal structure of a macromolecule, computational structural modeling can help to understand the associated biological processes, structure and function, as well as to reduce the number of further experiments required to characterize a given molecular entity. In the past decade, two classes of powerful automated tools for investigating the binding properties of proteins have been developed: the protein-protein docking program ClusPro and the FTMap and FTSite programs for protein hotspot identification. These methods have been widely used by the research community by means of publicly available online servers, and models built using these automated tools have been reported in a large number of publications. Importantly, additional experimental information can be leveraged to further improve the predictive power of these approaches. Here, an overview of the methods and their biological applications is provided together with a brief interpretation of the results.


Asunto(s)
Proteínas , Simulación por Computador , Simulación del Acoplamiento Molecular , Conformación Proteica , Proteínas/química
12.
Pac Symp Biocomput ; 27: 46-55, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34890135

RESUMEN

Predicting protein side-chains is important for both protein structure prediction and protein design. Modeling approaches to predict side-chains such as SCWRL4 have become one of the most widely used tools of its type due to fast and highly accurate predictions. Motivated by the recent success of AlphaFold2 in CASP14, our group adapted a 3D equivariant neural network architecture to predict protein side-chain conformations, specifically within a protein-protein interface, a problem that has not been fully addressed by AlphaFold2.


Asunto(s)
Biología Computacional , Proteínas , Humanos , Modelos Moleculares , Conformación Proteica , Proteínas/genética
13.
Bioinform Adv ; 2(1): vbac015, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699363

RESUMEN

Motivation: The scoring of antibody-antigen docked poses starting from unbound homology models has not been systematically optimized for a large and diverse set of input sequences. Results: To address this need, we have developed AbAdapt, a webserver that accepts antibody and antigen sequences, models their 3D structures, predicts epitope and paratope, and then docks the modeled structures using two established docking engines (Piper and Hex). Each of the key steps has been optimized by developing and training new machine-learning models. The sequences from a diverse set of 622 antibody-antigen pairs with known structure were used as inputs for leave-one-out cross-validation. The final set of cluster representatives included at least one 'Adequate' pose for 550/622 (88.4%) of the queries. The median (interquartile range) ranks of these 'Adequate' poses were 22 (5-77). Similar results were obtained on a holdout set of 100 unrelated antibody-antigen pairs. When epitopes were repredicted using docking-derived features for specific antibodies, the median ROC AUC increased from 0.679 to 0.720 in cross-validation and from 0.694 to 0.730 in the holdout set. Availability and implementation: AbAdapt and related data are available at https://sysimm.org/abadapt/. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

14.
Proteins ; 89(12): 1922-1939, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34368994

RESUMEN

An important question is how well the models submitted to CASP retain the properties of target structures. We investigate several properties related to binding. First we explore the binding of small molecules as probes, and count the number of interactions between each residue and such probes, resulting in a binding fingerprint. The similarity between two fingerprints, one for the X-ray structure and the other for a model, is determined by calculating their correlation coefficient. The fingerprint similarity weakly correlates with global measures of accuracy, and GDT_TS higher than 80 is a necessary but not sufficient condition for the conservation of surface binding properties. The advantage of this approach is that it can be carried out without information on potential ligands and their binding sites. The latter information was available for a few targets, and we explored whether the CASP14 models can be used to predict binding sites and to dock small ligands. Finally, we tested the ability of models to reproduce protein-protein interactions by docking both the X-ray structures and the models to their interaction partners in complexes. The analysis showed that in CASP14 the quality of individual domain models is approaching that offered by X-ray crystallography, and hence such models can be successfully used for the identification of binding and regulatory sites, as well as for assembling obligatory protein-protein complexes. Success of ligand docking, however, often depends on fine details of the binding interface, and thus may require accounting for conformational changes by simulation methods.


Asunto(s)
Sitios de Unión , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas , Biología Computacional , Ligandos , Simulación del Acoplamiento Molecular , Conformación Proteica , Proteínas/química , Proteínas/metabolismo , Programas Informáticos
15.
Proteins ; 89(12): 1800-1823, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34453465

RESUMEN

We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70-75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70-80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.


Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Proteínas , Programas Informáticos , Sitios de Unión , Simulación del Acoplamiento Molecular , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Análisis de Secuencia de Proteína
16.
Comput Struct Biotechnol J ; 19: 2549-2566, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025942

RESUMEN

We study the models submitted to round 12 of the Critical Assessment of protein Structure Prediction (CASP) experiment to assess how well the binding properties are conserved when the X-ray structures of the target proteins are replaced by their models. To explore small molecule binding we generate distributions of molecular probes - which are fragment-sized organic molecules of varying size, shape, and polarity - around the protein, and count the number of interactions between each residue and the probes, resulting in a vector of interactions we call a binding fingerprint. The similarity between two fingerprints, one for the X-ray structure and the other for a model of the protein, is determined by calculating the correlation coefficient between the two vectors. The resulting correlation coefficients are shown to correlate with global measures of accuracy established in CASP, and the relationship yields an accuracy threshold that has to be reached for meaningful binding surface conservation. The clusters formed by the probe molecules reliably predict binding hot spots and ligand binding sites in both X-ray structures and reasonably accurate models of the target, but ensembles of models may be needed for assessing the availability of proper binding pockets. We explored ligand docking to the few targets that had bound ligands in the X-ray structure. More targets were available to assess the ability of the models to reproduce protein-protein interactions by docking both the X-ray structures and models to their interaction partners in complexes. It was shown that this application is more difficult than finding small ligand binding sites, and the success rates heavily depend on the local structure in the potential interface. In particular, predicted conformations of flexible loops are frequently incorrect in otherwise highly accurate models, and may prevent predicting correct protein-protein interactions.

17.
Proteins ; 88(8): 1082-1090, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32142178

RESUMEN

Targets in the protein docking experiment CAPRI (Critical Assessment of Predicted Interactions) generally present new challenges and contribute to new developments in methodology. In rounds 38 to 45 of CAPRI, most targets could be effectively predicted using template-based methods. However, the server ClusPro required structures rather than sequences as input, and hence we had to generate and dock homology models. The available templates also provided distance restraints that were directly used as input to the server. We show here that such an approach has some advantages. Free docking with template-based restraints using ClusPro reproduced some interfaces suggested by weak or ambiguous templates while not reproducing others, resulting in correct server predicted models. More recently we developed the fully automated ClusPro TBM server that performs template-based modeling and thus can use sequences rather than structures of component proteins as input. The performance of the server, freely available for noncommercial use at https://tbm.cluspro.org, is demonstrated by predicting the protein-protein targets of rounds 38 to 45 of CAPRI.


Asunto(s)
Simulación del Acoplamiento Molecular , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Benchmarking , Sitios de Unión , Humanos , Ligandos , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína , Termodinámica
18.
J Comput Aided Mol Des ; 34(2): 179-189, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31879831

RESUMEN

We describe a new template-based method for docking flexible ligands such as macrocycles to proteins. It combines Monte-Carlo energy minimization on the manifold, a fast manifold search method, with BRIKARD for complex flexible ligand searching, and with the MELD accelerator of Replica-Exchange Molecular Dynamics simulations for atomistic degrees of freedom. Here we test the method in the Drug Design Data Resource blind Grand Challenge competition. This method was among the best performers in the competition, giving sub-angstrom prediction quality for the majority of the targets.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Diseño de Fármacos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Simulación del Acoplamiento Molecular , Secretasas de la Proteína Precursora del Amiloide/química , Ácido Aspártico Endopeptidasas/química , Sitios de Unión , Humanos , Ligandos , Simulación de Dinámica Molecular , Método de Montecarlo , Unión Proteica , Termodinámica
19.
J Mol Biol ; 432(11): 3404-3410, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31863748

RESUMEN

The template-based approach has been essential for achieving high-quality models in the recent rounds of blind protein-protein docking competition CAPRI (Critical Assessment of Predicted Interactions). However, few such automated methods exist for protein-small molecule docking. In this paper, we present an algorithm for template-based docking of small molecules. It searches for known complexes with ligands that have partial coverage of the target ligand, performs conformational sampling and template-guided energy refinement to produce a variety of possible poses, and then scores the refined poses. The algorithm is available as the automated ClusPro LigTBM server. It allows the user to specify the target protein as a PDB file and the ligand as a SMILES string. The server then searches for templates and uses them for docking, presenting the user with top-scoring poses and their confidence scores. The method is tested on the Astex Diverse benchmark, as well as on the targets from the last round of the D3R (Drug Design Data Resource) Grand Challenge. The server is publicly available as part of the ClusPro docking server suite at https://ligtbm.cluspro.org/.


Asunto(s)
Biología Computacional , Bases de Datos de Proteínas , Proteínas/ultraestructura , Bibliotecas de Moléculas Pequeñas/química , Simulación del Acoplamiento Molecular , Conformación Proteica , Proteínas/genética , Programas Informáticos , Homología Estructural de Proteína
20.
Proteins ; 87(12): 1241-1248, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31444975

RESUMEN

As a participant in the joint CASP13-CAPRI46 assessment, the ClusPro server debuted its new template-based modeling functionality. The addition of this feature, called ClusPro TBM, was motivated by the previous CASP-CAPRI assessments and by the proven ability of template-based methods to produce higher-quality models, provided templates are available. In prior assessments, ClusPro submissions consisted of models that were produced via free docking of pre-generated homology models. This method was successful in terms of the number of acceptable predictions across targets; however, analysis of results showed that purely template-based methods produced a substantially higher number of medium-quality models for targets for which there were good templates available. The addition of template-based modeling has expanded ClusPro's ability to produce higher accuracy predictions, primarily for homomeric but also for some heteromeric targets. Here we review the newest additions to the ClusPro web server and discuss examples of CASP-CAPRI targets that continue to drive further development. We also describe ongoing work not yet implemented in the server. This includes the development of methods to improve template-based models and the use of co-evolutionary information for data-assisted free docking.


Asunto(s)
Biología Computacional , Conformación Proteica , Proteínas/ultraestructura , Programas Informáticos , Algoritmos , Sitios de Unión/genética , Bases de Datos de Proteínas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mapeo de Interacción de Proteínas , Proteínas/química , Proteínas/genética , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...