Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(51): eabj1281, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34910507

RESUMEN

RNA amplification tests sensitively detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but their complexity and cost are prohibitive for expanding coronavirus disease 2019 (COVID-19) testing. We developed "Harmony COVID-19," a point-of-care test using inexpensive consumables, ready-to-use reagents, and a simple device. Our ready-to-use, multiplexed reverse transcription, loop-mediated isothermal amplification (RT-LAMP) can detect down to 0.38 SARS-CoV-2 RNA copies/µl and can report in 17 min for high­viral load samples (5000 copies/µl). Harmony detected 97 or 83% of contrived samples with ≥0.5 viral particles/µl in nasal matrix or saliva, respectively. Evaluation in clinical nasal specimens (n = 101) showed 100% detection of RNA extracted from specimens with ≥0.5 SARS-CoV-2 RNA copies/µl, with 100% specificity in specimens positive for other respiratory pathogens. Extraction-free analysis (n = 29) had 95% success in specimens with ≥1 RNA copies/µl. Usability testing performed first time by health care workers showed 95% accuracy.

3.
EBioMedicine ; 64: 103236, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33582488

RESUMEN

BACKGROUND: Detection of SARS-CoV-2 infections is important for treatment, isolation of infected and exposed individuals, and contact tracing. RT-qPCR is the "gold-standard" method to sensitively detect SARS-CoV-2 RNA, but most laboratory-developed RT-qPCR assays involve complex steps. Here, we aimed to simplify RT-qPCR assays by streamlining reaction setup, eliminating RNA extraction, and proposing reduced-cost detection workflows that avoid the need for expensive qPCR instruments. METHOD: A low-cost RT-PCR based "kit" was developed for faster turnaround than the CDC developed protocol. We demonstrated three detection workflows: two that can be deployed in laboratories conducting assays of variable complexity, and one that could be simple enough for point-of-care. Analytical sensitivity was assessed using SARS-CoV-2 RNA spiked in simulated nasal matrix. Clinical performance was evaluated using contrived human nasal matrix (n = 41) and clinical nasal specimens collected from individuals with respiratory symptoms (n = 110). FINDING: The analytical sensitivity of the lyophilised RT-PCR was 10 copies/reaction using purified SARS-CoV-2 RNA, and 20 copies/reaction when using direct lysate in simulated nasal matrix. Evaluation of assay performance on contrived human matrix showed 96.7-100% specificity and 100% sensitivity at ≥20 RNA copies. A head-to-head comparison with the standard CDC protocol on clinical specimens showed 83.8-94.6% sensitivity and 96.8-100% specificity. We found 3.6% indeterminate samples (undetected human control), lower than 8.1% with the standard protocol. INTERPRETATION: This preliminary work should support laboratories or commercial entities to develop and expand access to Covid-19 testing. Software guidance development for this assay is ongoing to enable implementation in other settings. FUND: USA NIH R01AI140845 and Seattle Children's Research Institute.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19 , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Humanos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA