Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 20(12): 2483-2494, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34711645

RESUMEN

Death receptor 5 (DR5) is an attractive target for cancer therapy due to its broad upregulated expression in multiple cancers and ability to directly induce apoptosis. Though anti-DR5 IgG antibodies have been evaluated in clinical trials, limited efficacy has been attributed to insufficient receptor crosslinking. IGM-8444 is an engineered, multivalent agonistic IgM antibody with 10 binding sites to DR5 that induces cancer cell apoptosis through efficient DR5 multimerization. IGM-8444 bound to DR5 with high avidity and was substantially more potent than an IgG with the same binding domains. IGM-8444 induced cytotoxicity in a broad panel of solid and hematologic cancer cell lines but did not kill primary human hepatocytes in vitro, a potential toxicity of DR5 agonists. In multiple xenograft tumor models, IGM-8444 monotherapy inhibited tumor growth, with strong and sustained tumor regression observed in a gastric PDX model. When combined with chemotherapy or the BCL-2 inhibitor ABT-199, IGM-8444 exhibited synergistic in vitro tumor cytotoxicity and enhanced in vivo efficacy, without augmenting in vitro hepatotoxicity. These results support the clinical development of IGM-8444 in solid and hematologic malignancies as a monotherapy and in combination with chemotherapy or BCL-2 inhibition.


Asunto(s)
Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Genes bcl-2/genética , Inmunoglobulina M/uso terapéutico , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/antagonistas & inhibidores , Sulfonamidas/uso terapéutico , Animales , Antineoplásicos/farmacología , Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoglobulina M/farmacología , Ratones , Ratones Desnudos , Sulfonamidas/farmacología
2.
Cancer Immunol Immunother ; 70(12): 3525-3540, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33903974

RESUMEN

Immune checkpoint inhibitors (ICIs) have emerged as promising therapies for the treatment of cancer. However, existing ICIs, namely PD-(L)1 and CTLA-4 inhibitors, generate durable responses only in a subset of patients. TIGIT is a co-inhibitory receptor and member of the DNAM-1 family of immune modulating proteins. We evaluated the prevalence of TIGIT and its cognate ligand, PVR (CD155), in human cancers by assessing their expression in a large set of solid tumors. TIGIT is expressed on CD4+ and CD8+ TILs and is upregulated in tumors compared to normal tissues. PVR is expressed on tumor cells and tumor-associated macrophages from multiple solid tumors. We explored the therapeutic potential of targeting TIGIT by generating COM902, a fully human anti-TIGIT hinge-stabilized IgG4 monoclonal antibody that binds specifically to human, cynomolgus monkey, and mouse TIGIT, and disrupts the binding of TIGIT with PVR. COM902, either alone or in combination with a PVRIG (COM701) or PD-1 inhibitor, enhances antigen-specific human T cell responses in-vitro. In-vivo, a mouse chimeric version of COM902 in combination with an anti-PVRIG or anti-PD-L1 antibody inhibited tumor growth and increased survival in two syngeneic mouse tumor models. In summary, COM902 enhances anti-tumor immune responses and is a promising candidate for the treatment of advanced malignancies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígeno B7-H1/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Receptores de Superficie Celular/inmunología , Receptores Inmunológicos/inmunología , Transducción de Señal/inmunología , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Humanos , Inmunoglobulina G/inmunología , Inmunoterapia/métodos , Células Jurkat , Macaca fascicularis , Ratones , Ratones Endogámicos BALB C
3.
Cancer Discov ; 11(5): 1040-1051, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33687987

RESUMEN

Therapeutic antibodies targeting the CTLA4/PD-1 pathways have revolutionized cancer immunotherapy by eliciting durable remission in patients with cancer. However, relapse following early response, attributable to primary and adaptive resistance, is frequently observed. Additional immunomodulatory pathways are being studied in patients with primary or acquired resistance to CTLA4 or PD-1 blockade. The DNAM1 axis is a potent coregulator of innate and adaptive immunity whose other components include the immunoglobulin receptors TIGIT, PVRIG, and CD96, and their nectin and nectin-like ligands. We review the basic biology and therapeutic relevance of this family, which has begun to show promise in cancer clinical trials. SIGNIFICANCE: Recent studies have outlined the immuno-oncologic ascendancy of coinhibitory receptors in the DNAM1 axis such as TIGIT and PVRIG and, to a lesser extent, CD96. Biological elucidation backed by ongoing clinical trials of single-agent therapy directed against TIGIT or PVRIG is beginning to provide the rationale for testing combination regimens of DNAM1 axis blockers in conjunction with anti-PD-1/PD-L1 agents.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos de Diferenciación de Linfocitos T/metabolismo , Neoplasias/tratamiento farmacológico , Receptores Inmunológicos/metabolismo , Humanos , Inmunoterapia
4.
Haematologica ; 106(12): 3115-3124, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147937

RESUMEN

This study explored the novel immune checkpoint poliovirus receptor-related immunoglobulin domain-containing (PVRIG) in acute myeloid leukemia (AML). We showed that AML patient blasts consistently expressed the PVRIG ligand (poliovirus receptor-related 2, PVRL2). Furthermore, PVRIG blockade significantly enhanced NK cell killing of PVRL2+, poliovirus receptor (PVR)lo AML cell lines, and significantly increased NK cell activation and degranulation in the context of patient primary AML blasts. However, in AML patient bone marrow, NK cell PVRIG expression levels were not increased. To understand how PVRIG blockade might potentially be exploited therapeutically, we investigated the biology of PVRIG and revealed that NK cell activation resulted in reduced PVRIG expression on the cell surface. This occurred whether NK cells were activated by tumour cell recognition, cytokines (IL-2 and IL-12) or activating receptor stimulation (CD16 and NKp46). PVRIG was present at higher levels in the cytoplasm than on the cell surface, particularly on CD56bright NK cells, which further increased cytoplasmic PVRIG levels following IL-2 and IL-12 activation. PVRIG was continually transported to the cell surface via the endoplasmic reticulum (ER) and Golgi in both unstimulated and activated NK cells. Taken together, our findings suggest that anti- PVRIG blocking antibody functions by binding to surface-bound PVRIG, which undergoes rapid turnover in both unstimulated and activated NK cells. We conclude that the PVRIGPVRL2 immune checkpoint axis can feasibly be targeted with PVRIG blocking antibody for NK-mediated immunotherapy of PVRL2+ AML.


Asunto(s)
Proteínas de Punto de Control Inmunitario , Células Asesinas Naturales , Leucemia Mieloide Aguda , Receptores de Superficie Celular , Humanos , Inmunoterapia , Activación de Linfocitos , Receptores de Células Asesinas Naturales
5.
Cancer Immunol Res ; 7(2): 257-268, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30659054

RESUMEN

Although checkpoint inhibitors that block CTLA-4 and PD-1 have improved cancer immunotherapies, targeting additional checkpoint receptors may be required to broaden patient response to immunotherapy. PVRIG is a coinhibitory receptor of the DNAM/TIGIT/CD96 nectin family that binds to PVRL2. We report that antagonism of PVRIG and TIGIT, but not CD96, increased CD8+ T-cell cytokine production and cytotoxic activity. The inhibitory effect of PVRL2 was mediated by PVRIG and not TIGIT, demonstrating that the PVRIG-PVRL2 pathway is a nonredundant signaling node. A combination of PVRIG blockade with TIGIT or PD-1 blockade further increased T-cell activation. In human tumors, PVRIG expression on T cells was increased relative to normal tissue and trended with TIGIT and PD-1 expression. Tumor cells coexpressing PVR and PVRL2 were observed in multiple tumor types, with highest coexpression in endometrial cancers. Tumor cells expressing either PVR or PVRL2 were also present in numbers that varied with the cancer type, with ovarian cancers having the highest percentage of PVR-PVRL2+ tumor cells and colorectal cancers having the highest percentage of PVR+PVRL2- cells. To demonstrate a role of PVRIG and TIGIT on tumor-derived T cells, we examined the effect of PVRIG and TIGIT blockade on human tumor-infiltrating lymphocytes. For some donors, blockade of PVRIG increased T-cell function, an effect enhanced by combination with TIGIT or PD-1 blockade. In summary, we demonstrate that PVRIG and PVRL2 are expressed in human cancers and the PVRIG-PVRL2 and TIGIT-PVR pathways are nonredundant inhibitory signaling pathways.See related article on p. 244.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Nectinas/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica , Humanos , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Ratones , Neoplasias/genética , Neoplasias/patología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal
6.
J Virol ; 85(22): 11770-80, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21900169

RESUMEN

Although cellular immunity to acute lymphocytic choriomeningitis virus (LCMV) infection has been well characterized in experimental studies in mice, the T cell response to this virus in humans is incompletely understood. Thus, we analyzed the breadths, magnitudes, and differentiation phenotypes of memory LCMV-specific CD8(+) and CD4(+) T cells in three human donors displaying a variety of disease outcomes after accidental needle stick injury or exposure to LCMV. Although only a small cohort of donors was analyzed at a single time point postinfection, several interesting observations were made. First, we were able to detect LCMV-specific CD8(+) and CD4(+) T cell responses directly ex vivo at 4 to 8 years after exposure, demonstrating the longevity of T cell memory in humans. Second, unlike in murine models of LCMV infection, we found that the breadths of memory CD8(+) and CD4(+) T cell responses were not significantly different from one another. Third, it seemed that the overall CD8(+) T cell response was augmented with increasing severity of disease, while the LCMV-specific CD4(+) T cell response magnitude was highly variable between the three different donors. Next, we found that LCMV-specific CD8(+) T cells in the three donors analyzed seemed to undergo an effector memory differentiation program distinct from that of CD4(+) T cells. Finally, the levels of expression of memory, costimulatory, and inhibitory receptors on CD8(+) and CD4(+) T cell subsets, in some instances, correlated with disease outcome. These data demonstrate for the first time LCMV-specific CD8(+) and CD4(+) T cells in infected humans and begin to provide new insights into memory T cell responses following an acute virus infection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Adulto , Experimentación Humana , Humanos , Masculino , Lesiones por Pinchazo de Aguja/complicaciones , Exposición Profesional/efectos adversos , Factores de Tiempo
7.
J Virol ; 84(19): 9947-56, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20668086

RESUMEN

Arenaviruses cause severe human disease ranging from aseptic meningitis following lymphocytic choriomeningitis virus (LCMV) infection to hemorrhagic fever syndromes following infection with Guanarito virus (GTOV), Junin virus (JUNV), Lassa virus (LASV), Machupo virus (MACV), Sabia virus (SABV), or Whitewater Arroyo virus (WWAV). Cellular immunity, chiefly the CD8(+) T-cell response, plays a critical role in providing protective immunity following infection with the Old World arenaviruses LASV and LCMV. In the current study, we evaluated whether HLA class I-restricted epitopes that are cross-reactive among pathogenic arenaviruses could be identified for the purpose of developing an epitope-based vaccination approach that would cross-protect against multiple arenaviruses. We were able to identify a panel of HLA-A*0201-restricted peptides derived from the same region of the glycoprotein precursor (GPC) of LASV (GPC spanning residues 441 to 449 [GPC(441-449)]), LCMV (GPC(447-455)), JUNV (GPC(429-437)), MACV (GPC(444-452)), GTOV (GPC(427-435)), and WWAV (GPC(428-436)) that displayed high-affinity binding to HLA-A*0201 and were recognized by CD8(+) T cells in a cross-reactive manner following LCMV infection or peptide immunization of HLA-A*0201 transgenic mice. Immunization of HLA-A*0201 mice with the Old World peptide LASV GPC(441-449) or LCMV GPC(447-455) induced high-avidity CD8(+) T-cell responses that were able to kill syngeneic target cells pulsed with either LASV GPC(441-449) or LCMV GPC(447-455) in vivo and provided significant protection against viral challenge with LCMV. Through this study, we have demonstrated that HLA class I-restricted, cross-reactive epitopes exist among diverse arenaviruses and that individual epitopes can be utilized as effective vaccine determinants for multiple pathogenic arenaviruses.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Infecciones por Arenaviridae/prevención & control , Arenavirus del Viejo Mundo , Vacunas Virales/administración & dosificación , Secuencia de Aminoácidos , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/virología , Antígenos Virales/genética , Infecciones por Arenaviridae/genética , Arenavirus del Nuevo Mundo/genética , Arenavirus del Nuevo Mundo/inmunología , Arenavirus del Nuevo Mundo/patogenicidad , Arenavirus del Viejo Mundo/genética , Arenavirus del Viejo Mundo/inmunología , Arenavirus del Viejo Mundo/patogenicidad , Linfocitos T CD8-positivos/inmunología , Reacciones Cruzadas , Citotoxicidad Inmunológica , Epítopos/administración & dosificación , Epítopos/genética , Antígenos HLA-A/genética , Antígeno HLA-A2 , Humanos , Virus Lassa/genética , Virus Lassa/inmunología , Virus Lassa/patogenicidad , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Ratones , Ratones Transgénicos , Vacunas Virales/genética , Vacunas Virales/inmunología
8.
J Immunol ; 185(2): 943-55, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20554959

RESUMEN

We investigated the molecular determinants of allergen-derived T cell epitopes in humans utilizing the Phleum pratense (Timothy grass) allergens (Phl p). PBMCs from allergic individuals were tested in ELISPOT assays with overlapping peptides spanning known Phl p allergens. A total of 43 distinct antigenic regions were recognized, illustrating the large breadth of grass-specific T cell epitopes. Th2 cytokines (as represented by IL-5) were predominant, whereas IFN-gamma, IL-10, and IL-17 were detected less frequently. Responses from specific immunotherapy treatment individuals were weaker and less consistent, yet similar in epitope specificity and cytokine pattern to allergic donors, whereas nonallergic individuals were essentially nonreactive. Despite the large breadth of recognition, nine dominant antigenic regions were defined, each recognized by multiple donors, accounting for 51% of the total response. Multiple HLA molecules and loci restricted the dominant regions, and the immunodominant epitopes could be predicted using bioinformatic algorithms specific for 23 common HLA-DR, DP, and DQ molecules. Immunodominance was also apparent at the Phl p Ag level. It was found that 52, 19, and 14% of the total response was directed to Phl p 5, 1, and 3, respectively. Interestingly, little or no correlation between Phl p-specific IgE levels and T cell responses was found. Thus, certain intrinsic features of the allergen protein might influence immunogenicity at the level of T cell reactivity. Consistent with this notion, different Phl p Ags were associated with distinct patterns of IL-5, IFN-gamma, IL-10, and IL-17 production.


Asunto(s)
Alérgenos/inmunología , Epítopos de Linfocito T/inmunología , Oligopéptidos/inmunología , Phleum/inmunología , Secuencia de Aminoácidos , Antígenos de Plantas/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Epítopos/inmunología , Humanos , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-5/metabolismo , Datos de Secuencia Molecular , Oligopéptidos/síntesis química , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo
9.
Microbiol Mol Biol Rev ; 74(2): 157-70, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20508245

RESUMEN

The arenaviruses are a family of negative-sense RNA viruses that cause severe human disease ranging from aseptic meningitis to hemorrhagic fever syndromes. There are currently no FDA-approved vaccines for the prevention of arenavirus disease, and therapeutic treatment is limited to the use of ribavirin and/or immune plasma for a subset of the pathogenic arenaviruses. The considerable genetic variability observed among the seven arenaviruses that are pathogenic for humans illustrates one of the major challenges for vaccine development today, namely, to overcome pathogen heterogeneity. Over the past 5 years, our group has tested several strategies to overcome pathogen heterogeneity, utilizing the pathogenic arenaviruses as a model system. Because T cells play a prominent role in protective immunity following arenavirus infection, we specifically focused on the development of human vaccines that would induce multivalent and cross-protective cell-mediated immune responses. To facilitate our vaccine development and testing, we conducted large-scale major histocompatibility complex (MHC) class I and class II epitope discovery on murine, nonhuman primate, and human backgrounds for each of the pathogenic arenaviruses, including the identification of protective HLA-restricted epitopes. Finally, using the murine model of lymphocytic choriomeningitis virus infection, we studied the phenotypic characteristics associated with immunodominant and protective T cell epitopes. This review summarizes the findings from our studies and discusses their application to future vaccine design.


Asunto(s)
Arenavirus/inmunología , Vacunas Virales/inmunología , Animales , Infecciones por Arenaviridae/prevención & control , Linfocitos T CD8-positivos/inmunología , Epítopos/inmunología , Humanos , Ratones
10.
Immunome Res ; 6: 4, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20478058

RESUMEN

BACKGROUND: Several arenaviruses cause severe hemorrhagic fever and aseptic meningitis in humans for which no licensed vaccines are available. A major obstacle for vaccine development is pathogen heterogeneity within the Arenaviridae family. Evidence in animal models and humans indicate that T cell and antibody-mediated immunity play important roles in controlling arenavirus infection and replication. Because CD4+ T cells are needed for optimal CD8+ T cell responses and to provide cognate help for B cells, knowledge of epitopes recognized by CD4+ T cells is critical to the development of an effective vaccine strategy against arenaviruses. Thus, the goal of the present study was to define and characterize CD4+ T cell responses from a broad repertoire of pathogenic arenaviruses (including lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses) and to provide determinants with the potential to be incorporated into a multivalent vaccine strategy. RESULTS: By inoculating HLA-DRB1*0101 transgenic mice with a panel of recombinant vaccinia viruses, each expressing a single arenavirus antigen, we identified 37 human HLA-DRB1*0101-restricted CD4+ T cell epitopes from the 7 antigenically distinct arenaviruses. We showed that the arenavirus-specific CD4+ T cell epitopes are capable of eliciting T cells with a propensity to provide help and protection through CD40L and polyfunctional cytokine expression. Importantly, we demonstrated that the set of identified CD4+ T cell epitopes provides broad, non-ethnically biased population coverage of all 7 arenavirus species targeted by our studies. CONCLUSIONS: The identification of CD4+ T cell epitopes, with promiscuous binding properties, derived from 7 different arenavirus species will aid in the development of a T cell-based vaccine strategy with the potential to target a broad range of ethnicities within the general population and to protect against both Old and New World arenavirus infection.

11.
Hum Immunol ; 71(5): 468-74, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20156506

RESUMEN

Influenza virus remains a significant health concern, with current circulating strains that affect millions each year plus the threat of newly emerging strains, such as swine-origin H1N1 and avian H5N1. Our hypothesis is that influenza-derived HLA-class I-restricted epitopes can be identified for use as a reagent to monitor and quantitate human CD8(+) T-cell responses and for vaccine development to induce protective cellular immunity. Protein sequences from influenza A virus strains currently in circulation, agents of past pandemics and zoonotic infections of man were evaluated for sequences predicted to bind to alleles representative of the most frequent HLA-A and -B (class I) types worldwide. Peptides that bound several different HLA molecules and were conserved among diverse influenza subtypes were tested for their capacity to recall influenza-specific immune responses using human donor PBMC. Accordingly, 28 different epitopes antigenic for human donor PBMC were identified and 25 were 100% conserved in the newly emerged swine-origin H1N1 strain. The epitope set defined herein should provide a reagent applicable to quantitate CD8(+) T cell human responses irrespective of influenza subtype and HLA composition of the responding population. In addition, these epitopes may be suitable for vaccine applications directed at the induction of cellular immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Virus de la Influenza A/inmunología , Secuencia de Aminoácidos , Secuencia Conservada , Humanos , Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Datos de Secuencia Molecular , Proteínas Virales/inmunología
12.
PLoS Pathog ; 5(12): e1000695, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20019801

RESUMEN

Arenaviruses are the causative pathogens of severe hemorrhagic fever and aseptic meningitis in humans, for which no licensed vaccines are currently available. Pathogen heterogeneity within the Arenaviridae family poses a significant challenge for vaccine development. The main hypothesis we tested in the present study was whether it is possible to design a universal vaccine strategy capable of inducing simultaneous HLA-restricted CD8+ T cell responses against 7 pathogenic arenaviruses (including the lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses), either through the identification of widely conserved epitopes, or by the identification of a collection of epitopes derived from multiple arenavirus species. By inoculating HLA transgenic mice with a panel of recombinant vaccinia viruses (rVACVs) expressing the different arenavirus proteins, we identified 10 HLA-A02 and 10 HLA-A03-restricted epitopes that are naturally processed in human antigen-presenting cells. For some of these epitopes we were able to demonstrate cross-reactive CD8+ T cell responses, further increasing the coverage afforded by the epitope set against each different arenavirus species. Importantly, we showed that immunization of HLA transgenic mice with an epitope cocktail generated simultaneous CD8+ T cell responses against all 7 arenaviruses, and protected mice against challenge with rVACVs expressing either Old or New World arenavirus glycoproteins. In conclusion, the set of identified epitopes allows broad, non-ethnically biased coverage of all 7 viral species targeted by our studies.


Asunto(s)
Infecciones por Arenaviridae/terapia , Arenaviridae/inmunología , Vacunas Virales/inmunología , Animales , Antígenos Virales/uso terapéutico , Infecciones por Arenaviridae/prevención & control , Linfocitos T CD8-positivos/inmunología , Reacciones Cruzadas/inmunología , Epítopos/uso terapéutico , Antígenos HLA-A/uso terapéutico , Fiebres Hemorrágicas Virales/prevención & control , Fiebres Hemorrágicas Virales/terapia , Humanos , Inmunización , Ratones , Ratones Transgénicos , Resultado del Tratamiento
13.
Proc Natl Acad Sci U S A ; 106(48): 20365-70, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19918065

RESUMEN

A major concern about the ongoing swine-origin H1N1 influenza virus (S-OIV) outbreak is that the virus may be so different from seasonal H1N1 that little immune protection exists in the human population. In this study, we examined the molecular basis for pre-existing immunity against S-OIV, namely the recognition of viral immune epitopes by T cells or B cells/antibodies that have been previously primed by circulating influenza strains. Using data from the Immune Epitope Database, we found that only 31% (8/26) of B-cell epitopes present in recently circulating H1N1 strains are conserved in the S-OIV, with only 17% (1/6) conserved in the hemagglutinin (HA) and neuraminidase (NA) surface proteins. In contrast, 69% (54/78) of the epitopes recognized by CD8(+) T cells are completely invariant. We further demonstrate experimentally that some memory T-cell immunity against S-OIV is present in the adult population and that such memory is of similar magnitude as the pre-existing memory against seasonal H1N1 influenza. Because protection from infection is antibody mediated, a new vaccine based on the specific S-OIV HA and NA proteins is likely to be required to prevent infection. However, T cells are known to blunt disease severity. Therefore, the conservation of a large fraction of T-cell epitopes suggests that the severity of an S-OIV infection, as far as it is determined by susceptibility of the virus to immune attack, would not differ much from that of seasonal flu. These results are consistent with reports about disease incidence, severity, and mortality rates associated with human S-OIV.


Asunto(s)
Protección Cruzada/inmunología , Epítopos/inmunología , Inmunidad Celular/inmunología , Memoria Inmunológica/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Modelos Moleculares , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Biología Computacional , Bases de Datos Genéticas , Epítopos/genética , Hemaglutininas/genética , Humanos , Neuraminidasa/genética
14.
Immunome Res ; 5: 3, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19534819

RESUMEN

BACKGROUND: Previous studies have defined vaccinia virus (VACV)-derived T cell epitopes in VACV-infected human leukocyte antigen-A*0201 (HLA-A2.1) transgenic (Tg) mice and A2.1-positive human Dryvax vaccinees. A total of 14 epitopes were detected in humans and 16 epitopes in A2.1 Tg mice; however, only two epitopes were independently reported in both systems. This limited overlap raised questions about the suitability of using HLA Tg mice as a model system to map human T cell responses to a complex viral pathogen. The present study was designed to investigate this issue in more detail. RESULTS: Re-screening the panel of 28 A2.1-restricted epitopes in additional human vaccinees and in A2.1 Tg mice revealed that out of the 28 identified epitopes, 13 were detectable in both systems, corresponding to a 46% concordance rate. Interestingly, the magnitude of responses in Tg mice against epitopes originally identified in humans is lower than for epitopes originally detected in mice. Likewise, responses in humans against epitopes originally detected in Tg mice are of lower magnitude. CONCLUSION: These data suggest that differences in immunodominance patterns might explain the incomplete response overlap, and that with limitations; HLA Tg mice represent a relevant and suitable model system to study immune responses against complex pathogens.

15.
J Immunol ; 182(8): 4865-73, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19342665

RESUMEN

Infection with one of the four serotypes of dengue virus (DENV1-4) can result in a range of clinical manifestations in humans, from dengue fever to the more serious dengue hemorrhagic fever/dengue shock syndrome. Although T cells have been implicated in the immunopathogenesis of secondary infections with heterologous DENV serotypes, the role of T cells in protection against DENV is unknown. In this study, we used a mouse-passaged DENV2 strain, S221, to investigate the role of CD8(+) T cells in the immune response to primary DENV infection. S221 did not replicate well in wild-type mice, but did induce a CD8(+) T cell response, whereas viral replication and a robust CD8(+) T cell response were observed after infection of IFN-alpha/betaR(-/-) mice. Depletion of CD8(+) T cells from IFN-alpha/betaR(-/-) mice before infection resulted in significantly higher viral loads compared with undepleted mice. Mapping the specificity of the CD8(+) T cell response led to the identification of 12 epitopes derived from 6 of the 10 DENV proteins, with a similar immunodominance hierarchy observed in wild-type and IFN-alpha/betaR(-/-) mice. DENV-specific CD8(+) T cells produced IFN-gamma, TNF-alpha, expressed cell surface CD107a, and exhibited cytotoxic activity in vivo. Finally, immunization with four of the immunodominant CD8(+) T cell epitopes enhanced viral clearance. Collectively, our results reveal an important role for CD8(+) T cells in the host defense against DENV and demonstrate that the anti-DENV CD8(+) T cell response can be enhanced by immunization, providing rationale for designing DENV-specific vaccines that induce cell-mediated immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virus del Dengue/inmunología , Aedes , Animales , Línea Celular , Epítopos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo
16.
J Immunol ; 181(3): 2124-33, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18641351

RESUMEN

The primary CD8(+) T cell response of C57BL/6J mice against the 28 known epitopes of lymphocytic choriomeningitis virus (LCMV) is associated with a clear immunodominance hierarchy whose mechanism has yet to be defined. To evaluate the role of epitope competition in immunodominance, we manipulated the number of CD8(+) T cell epitopes that could be recognized during LCMV infection. Decreasing epitope numbers, using a viral variant lacking dominant epitopes or C57BL/6J mice lacking H-2K(b), resulted in minor response increases for the remaining epitopes and no new epitopes being recognized. Increasing epitope numbers by using F(1) hybrid mice, delivery by recombinant vaccinia virus, or epitope delivery as a pool in IFA maintained the overall response pattern; however, changes in the hierarchy did become apparent. MHC binding affinity of these epitopes was measured and was found to not strictly predict the hierarchy since in several cases similarly high binding affinities were associated with differences in immunodominance. In these instances the naive CD8(+) T cell precursor frequency, directly measured by tetramer staining, correlated with the response hierarchy seen after LCMV infection. Finally, we investigated an escape mutant of the dominant GP33-41 epitope that elicited a weak response following LCMV variant virus infection. Strikingly, dominance loss likely reflects a substantial reduction in frequencies of naive precursors specific for this epitope. Thus, our results indicate that an intrinsic property of the epitope (MHC binding affinity) and an intrinsic property of the host (naive precursor frequency) jointly dictate the immunodominance hierarchy of CD8(+) T cell responses.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Forma de la Célula/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad/inmunología , Inmunidad Innata/inmunología , Animales , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Ratones Noqueados , Unión Proteica
17.
J Virol ; 81(10): 4928-40, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17329346

RESUMEN

CD8(+) T-cell responses control lymphocytic choriomeningitis virus (LCMV) infection in H-2(b) mice. Although antigen-specific responses against LCMV infection are well studied, we found that a significant fraction of the CD8(+) CD44(hi) T-cell response to LCMV in H-2(b) mice was not accounted for by known epitopes. We screened peptides predicted to bind major histocompatibility complex class I and overlapping 15-mer peptides spanning the complete LCMV proteome for gamma interferon (IFN-gamma) induction from CD8(+) T cells derived from LCMV-infected H-2(b) mice. We identified 19 novel epitopes. Together with the 9 previously known, these epitopes account for the total CD8(+) CD44(hi) response. Thus, bystander T-cell activation does not contribute appreciably to the CD8(+) CD44(hi) pool. Strikingly, 15 of the 19 new epitopes were derived from the viral L polymerase, which, until now, was not recognized as a target of the cellular response induced by LCMV infection. The L epitopes induced significant levels of in vivo cytotoxicity and conferred protection against LCMV challenge. Interestingly, protection from viral challenge was best correlated with the cytolytic potential of CD8(+) T cells, whereas IFN-gamma production and peptide avidity appear to play a lesser role. Taken together, these findings illustrate that the LCMV-specific CD8(+) T-cell response is more complex than previously appreciated.


Asunto(s)
Antígenos Virales/inmunología , Infecciones por Arenaviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Animales , Citotoxicidad Inmunológica , ARN Polimerasas Dirigidas por ADN/inmunología , Modelos Animales de Enfermedad , Mapeo Epitopo , Femenino , Receptores de Hialuranos/análisis , Interferón gamma/biosíntesis , Ratones , Ratones Endogámicos C57BL , Bazo/virología , Ensayo de Placa Viral
18.
Trends Pharmacol Sci ; 27(7): 360-7, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16766050

RESUMEN

Ca2+ channels in the plasma membrane of T cells vitally influence Ca2+-dependent signals that lead ultimately to cytokine secretion, cellular proliferation and apoptosis. Conventional models depict the Ca2+ inrush across the T-cell membrane following T-cell receptor engagement as being due to Ca2+-release-activated Ca2+ (CRAC) channels. A poorly understood mechanism detects the lowered Ca2+ concentrations within intracellular stores that open CRAC channels. Mammalian homologs of the Drosophila transient receptor potential Ca2+ channels possibly help to gate the store-operated, Ca2+-borne CRAC current. In this article, we review evidence of a supplementary involvement of other Ca2+ channels, the opening of which does not necessarily reflect intracellular Ca2+-store depletion. We highlight a role for variants of L-type voltage-dependent Ca2+ channels in increasing intracellular Ca2+ concentrations during activation. For more-accurate modeling of lymphocyte activation and possible pharmacological interventions, future research should aim to identify physiologically relevant situations in which such channels help to shape the Ca2+ signal.


Asunto(s)
Canales de Calcio/fisiología , Linfocitos T/fisiología , Animales , Electrofisiología , Humanos , Activación del Canal Iónico/fisiología , Activación de Linfocitos/efectos de los fármacos , Linfocitos T/metabolismo
19.
Mol Immunol ; 42(12): 1461-74, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15899519

RESUMEN

Calcium (Ca2+) influx is a fundamental intracellular signal that is required to initiate and sustain T lymphocyte activation. Dihydropyridine-sensitive, L-type Ca2+ channels appear to play a significant role in Ca2+ mobilization during T cell activation, but very little is known about the molecular structure of these channels in T lymphocytes. Here we identify two novel splice variants of the Ca(V)1.4 (alpha1F) L-type Ca2+ channel that are expressed in human T lymphocytes, and also demonstrate expression of the Ca(V)1.4 protein in the human Jurkat T cell leukemia line and human peripheral blood T lymphocytes (PBTs). The carboxy-termini of both Ca(V)1.4 splice isoforms contain unique exon usages distinct from the Ca(V)1.4 channel isolated from human retina that may render these channel variants insensitive to changes in membrane depolarization. Additional evidence of the importance of these new splice variants comes from the demonstration that the mRNA expression of the Ca(V)1.4 splice isoforms is regulated by TCR-induced activation in Jurkat T cells, and to a lesser extent in human PBTs. Overall these results provide the first evidence that structurally unique L-type Ca2+ channels exist in T lymphocytes, which can contribute to a Ca2+ influx during T lymphocyte activation.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Linfocitos T/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Canales de Calcio Tipo L/genética , Femenino , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Células Jurkat , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Retina/metabolismo , Bazo/metabolismo , Canales Catiónicos TRPM
20.
J Biol Chem ; 278(47): 46949-60, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-12954628

RESUMEN

In T lymphocytes, sustained calcium (Ca2+) influx through Ca2+ channels localized in the plasma membrane is critical for T cell activation and proliferation. Previous studies indicated that voltage-dependent Ca2+ channels (VDCCs) play a role in Ca2+ mobilization during T lymphocyte activation. However, the role of VDCCs in otherwise nonexcitable cells is still poorly understood. We used RT-PCR to identify a transcript encoding the pore-forming alpha1F-subunit of an L-type Ca2+ channel in T lymphocytes. Its identity was confirmed by DNA sequencing. To further investigate the contribution of Ca2+ influx through VDCCs, we assessed the effects of the 1,4-dihydropyridine L-type Ca2+ channel agonist, (+/-) Bay K 8644, and antagonist, nifedipine, on the human Jurkat T cell leukemia line, human peripheral blood T lymphocytes and mouse splenocytes. We found that treatment of T lymphocytes with (+/-) Bay K 8644 increased intracellular Ca2+ and induced the activation of phosphoextracellular-regulated kinase 1/2 (Erk1/2), whereas nifedipine blocked Ca2+ influx, the activity of Erk1/2 and nuclear factor of activated T cells (NFAT), interleukin-2 (IL-2) production, and IL-2 receptor expression. Nifedipine also significantly suppressed splenocyte proliferation in an in vitro mixed lymphocyte reaction and the proliferation of male antigen (H-Y)-specific T cell receptor-transgenic CD8+ T cells in transplanted male mice in vivo. Taken together these novel findings indicate that an L-type Ca2+ channel plays a significant role in the Ca2+ influx pathways mediating T lymphocyte activation and proliferation in vitro and in vivo.


Asunto(s)
Canales de Calcio/fisiología , Linfocitos T/química , Linfocitos T/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/fisiología , Línea Celular Tumoral , Femenino , Humanos , Células Jurkat , Masculino , Ratones , Ratones Transgénicos , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , ARN Mensajero/química , ARN Mensajero/aislamiento & purificación , Alineación de Secuencia , Análisis de Secuencia de ADN , Transducción de Señal , Bazo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...