Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Inflammation ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563877

RESUMEN

Lysosomal membrane permeabilization caused either via phagocytosis of particulates or the uptake of protein aggregates can trigger the activation of NLRP3 inflammasome- an intense inflammatory response that drives the release of the pro-inflammatory cytokine IL-1ß by regulating the activity of CASPASE 1. The maintenance of lysosomal homeostasis and lysosomal membrane integrity is facilitated by the AAA+ ATPase, VCP/p97 (VCP). However, the relationship between VCP and NLRP3 inflammasome activity remains unexplored. Here, we demonstrate that the VCP inhibitors, DBeQ and ML240 elicit the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) when used as activation stimuli. Moreover, genetic inhibition of VCP or VCP chemical inhibition enhances lysosomal membrane damage and augments LLoME-associated NLRP3 inflammasome activation in BMDMs. Similarly, VCP inactivation also augments NLRP3 inflammasome activation mediated by aggregated alpha-synuclein fibrils and lysosomal damage. These data suggest that VCP is a participant in the complex regulation of NLRP3 inflammasome activation.

2.
Nat Commun ; 15(1): 2750, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553463

RESUMEN

The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. Here we develop and validate a method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and use solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise a mixture of single protofilament and two protofilament fibrils with very low twist. The protofilament fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural characterization of LBD Asyn fibrils and approaches for studying disease mechanisms, imaging agents and therapeutics targeting Asyn.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/química , Microscopía por Crioelectrón , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/patología
3.
Biomol NMR Assign ; 17(2): 281-286, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37919529

RESUMEN

Fibrils of the protein α-synuclein (Asyn) are implicated in the pathogenesis of Parkinson Disease, Lewy Body Dementia, and Multiple System Atrophy. Numerous forms of Asyn fibrils have been studied by solid-state NMR and resonance assignments have been reported. Here, we report a new set of 13C, 15N assignments that are unique to fibrils obtained by amplification from postmortem brain tissue of a patient diagnosed with Lewy Body Dementia.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/química , Enfermedad por Cuerpos de Lewy/patología , Resonancia Magnética Nuclear Biomolecular , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Atrofia de Múltiples Sistemas/metabolismo , Atrofia de Múltiples Sistemas/patología
4.
J Med Chem ; 66(17): 12185-12202, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37651366

RESUMEN

Abnormal α-synuclein (α-syn) aggregation characterizes α-synucleinopathies, including Parkinson's disease (PD) and multiple system atrophy (MSA). However, no suitable positron emission tomography (PET) radiotracer for imaging α-syn in PD and MSA exists currently. Our structure-activity relationship studies identified 4-methoxy-N-(4-(3-(pyridin-2-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)phenyl)benzamide (4i) as a PET radiotracer candidate for imaging α-syn. In vitro assays revealed high binding of 4i to recombinant α-syn fibrils (inhibition constant (Ki) = 6.1 nM) and low affinity for amyloid beta (Aß) fibrils in Alzheimer's disease (AD) homogenates. However, [3H]4i also exhibited high specific binding to AD, progressive supranuclear palsy, and corticobasal degeneration tissues as well as PD and MSA tissues, suggesting notable affinity to tau. Nevertheless, the specific binding to pathologic α-syn aggregates in MSA post-mortem brain tissues was significantly higher than in PD tissues. This finding demonstrated the potential use of [11C]4i as a PET tracer for imaging α-syn in MSA patients. Nonhuman primate PET studies confirmed good brain uptake and rapid washout for [11C]4i.


Asunto(s)
Enfermedad de Alzheimer , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Animales , alfa-Sinucleína , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Péptidos beta-Amiloides , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen
5.
Res Sq ; 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36865115

RESUMEN

Fibrils of the protein α-synuclein (Asyn) are implicated in the pathogenesis of Parkinson Disease, Lewy Body Dementia, and Multiple System Atrophy. Numerous forms of Asyn fibrils have been studied by solid-state NMR and resonance assignments have been reported. Here, we report a new set of 13C, 15N assignments that are unique to fibrils obtained by amplification from postmortem brain tissue of a patient diagnosed with Lewy Body Dementia.

6.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36711931

RESUMEN

The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. We developed and validated a novel method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and used solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise two protofilaments with pseudo-21 helical screw symmetry, very low twist and an interface formed by antiparallel beta strands of residues 85-93. The fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural landscape of LBD Asyn fibrils and inform further studies of disease mechanisms, imaging agents and therapeutics targeting Asyn.

7.
Ann Neurol ; 93(1): 184-195, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331161

RESUMEN

OBJECTIVE: The objective of this study was to evaluate the relationship between Parkinson's disease (PD) with dementia and cortical proteinopathies in a large population of pathologically confirmed patients with PD. METHODS: We reviewed clinical data from all patients with autopsy data seen in the Movement Disorders Center at Washington University, St. Louis, between 1996 and 2019. All patients with a diagnosis of PD based on neuropathology were included. We used logistic regression and multivariate analysis of covariance (MANCOVA) to investigate the relationship between neuropathology and dementia. RESULTS: A total of 165 patients with PD met inclusion criteria. Among these, 128 had clinical dementia. Those with dementia had greater mean ages of motor onset and death but equivalent mean disease duration. The delay between motor symptom onset and dementia was 1 year or less in 14 individuals, meeting research diagnostic criteria for possible or probable dementia with Lewy bodies (DLB). Braak Lewy body stage was associated with diagnosis of dementia, whereas severities of Alzheimer's disease neuropathologic change (ADNC) and small vessel pathology did not. Pathology of individuals diagnosed with DLB did not differ significantly from that of other patients with PD with dementia. Six percent of individuals with PD and dementia did not have neocortical Lewy bodies; and 68% of the individuals with PD but without dementia did have neocortical Lewy bodies. INTERPRETATION: Neocortical Lewy bodies almost always accompany dementia in PD; however, they also appear in most PD patients without dementia. In some cases, dementia may occur in patients with PD without neocortical Lewy bodies, ADNC, or small vessel disease. Thus, other factors not directly related to these classic neuropathologic features may contribute to PD dementia. ANN NEUROL 2023;93:184-195.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Neocórtex , Enfermedad de Parkinson , Humanos , Cuerpos de Lewy/patología , Enfermedad de Parkinson/complicaciones , Enfermedad por Cuerpos de Lewy/patología , Neocórtex/patología , Enfermedad de Alzheimer/patología
8.
Neurology ; 99(1): e66-e76, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35418463

RESUMEN

BACKGROUND AND OBJECTIVES: People with Parkinson disease (PD) commonly experience cognitive decline, which may relate to increased α-synuclein, tau, and ß-amyloid accumulation. This study examines whether the different proteins predict longitudinal cognitive decline in PD. METHODS: All participants (PD n = 152, controls n = 52) were part of a longitudinal study and completed a lumbar puncture for CSF protein analysis (α-synuclein, total tau [tau], and ß-amyloid42 [ß-amyloid]), a ß-amyloid PET scan, and/or provided a blood sample for APOE genotype (ε4+, ε4-), which is a risk factor for ß-amyloid accumulation. Participants also had comprehensive, longitudinal clinical assessments of overall cognitive function and dementia status, as well as cognitive testing of attention, language, memory, and visuospatial and executive function. We used hierarchical linear growth models to examine whether the different protein metrics predict cognitive change and multivariate Cox proportional hazard models to predict time to dementia conversion. Akaike information criterion was used to compare models for best fit. RESULTS: Baseline measures of CSF ß-amyloid predicted decline for memory (p = 0.04) and overall cognitive function (p = 0.01). APOE genotypes showed a significant group (ε4+, ε4-) effect such that ε4+ individuals declined faster than ε4- individuals in visuospatial function (p = 0.03). Baseline ß-amyloid PET significantly predicted decline in all cognitive measures (all p ≤ 0.004). Neither baseline CSF α-synuclein nor tau predicted cognitive decline. All 3 ß-amyloid--related metrics (CSF, PET, APOE) also predicted time to dementia. Models with ß-amyloid PET as a predictor fit the data the best. DISCUSSION: Presence or risk of ß-amyloid accumulation consistently predicted cognitive decline and time to dementia in PD. This suggests that ß-amyloid has high potential as a prognostic indicator and biomarker for cognitive changes in PD.


Asunto(s)
Disfunción Cognitiva , Demencia , Enfermedad de Parkinson , Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Demencia/complicaciones , Humanos , Estudios Longitudinales , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Tomografía de Emisión de Positrones , alfa-Sinucleína , Proteínas tau
9.
Ann Clin Transl Neurol ; 9(2): 106-121, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35060360

RESUMEN

OBJECTIVE: Parkinson disease (PD) is defined by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies and Lewy neurites. It affects multiple cortical and subcortical neuronal populations. The majority of people with PD develop dementia, which is associated with Lewy bodies in neocortex and referred to as Lewy body dementia (LBD). Other neuropathologic changes, including amyloid ß (Aß) and tau accumulation, occur in some LBD cases. We sought to quantify α-syn, Aß, and tau accumulation in neocortical, limbic, and basal ganglia regions. METHODS: We isolated insoluble protein from fresh frozen postmortem brain tissue samples for eight brains regions from 15 LBD, seven Alzheimer disease (AD), and six control cases. We measured insoluble α-syn, Aß, and tau with recently developed sandwich ELISAs. RESULTS: We detected a wide range of insoluble α-syn accumulation in LBD cases. The majority had substantial α-syn accumulation in most regions, and dementia severity correlated with neocortical α-syn. However, three cases had low neocortical levels that were indistinguishable from controls. Eight LBD cases had substantial Aß accumulation, although the mean Aß level in LBD was lower than in AD. The presence of Aß was associated with greater α-syn accumulation. Tau accumulation accompanied Aß in only one LBD case. INTERPRETATION: LBD is associated with insoluble α-syn accumulation in neocortical regions, but the relatively low neocortical levels in some cases suggest that other changes contribute to impaired function, such as loss of neocortical innervation from subcortical regions. The correlation between Aß and α-syn accumulation suggests a pathophysiologic relationship between these two processes.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/análisis , Encéfalo/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , alfa-Sinucleína/análisis , Proteínas tau/análisis , Anciano , Anciano de 80 o más Años , Autopsia , Humanos , Neocórtex/metabolismo
10.
Mov Disord ; 36(4): 948-954, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33253432

RESUMEN

BACKGROUND: The clinical diagnosis of Parkinson's disease (PD) requires the presence of parkinsonism and supportive criteria that include a clear and dramatic beneficial response to dopaminergic therapy. Our aim was to test the diagnostic criterion of dopaminergic response by evaluating its association with pathologically confirmed diagnoses in a large population of parkinsonian patients. METHODS: We reviewed clinical data maintained in an electronic medical record from all patients with autopsy data who had been seen in the Movement Disorders Center at Washington University, St. Louis, between 1996 and 2018. All patients with parkinsonism who underwent postmortem neuropathologic examination were included in this analysis. RESULTS: There were 257 unique parkinsonian patients with autopsy-based diagnoses who had received dopaminergic therapy. Marked or moderate response to dopaminergic therapy occurred in 91.2% (166/182) of those with autopsy-confirmed PD, 52.0% (13/25) of those with autopsy-confirmed multiple systems atrophy, 44.4% (8/18) of those with autopsy-confirmed progressive supranuclear palsy, and 1 (1/8) with autopsy-confirmed corticobasal degeneration. Other diagnoses were responsible for the remaining 24 individuals, 9 of whom had a moderate response to dopaminergic therapy. CONCLUSION: A substantial response to dopaminergic therapy is frequent but not universal in PD. An absent response does not exclude PD. In other neurodegenerative disorders associated with parkinsonism, a prominent response may also be evident, but this occurs less frequently than in PD. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Levodopa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico
11.
Sci Transl Med ; 12(529)2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024799

RESUMEN

Apolipoprotein E (APOE) ε4 genotype is associated with increased risk of dementia in Parkinson's disease (PD), but the mechanism is not clear, because patients often have a mixture of α-synuclein (αSyn), amyloid-ß (Aß), and tau pathologies. APOE ε4 exacerbates brain Aß pathology, as well as tau pathology, but it is not clear whether APOE genotype independently regulates αSyn pathology. In this study, we generated A53T αSyn transgenic mice (A53T) on Apoe knockout (A53T/EKO) or human APOE knockin backgrounds (A53T/E2, E3, and E4). At 12 months of age, A53T/E4 mice accumulated higher amounts of brainstem detergent-insoluble phosphorylated αSyn compared to A53T/EKO and A53T/E3; detergent-insoluble αSyn in A53T/E2 mice was undetectable. By immunohistochemistry, A53T/E4 mice displayed a higher burden of phosphorylated αSyn and reactive gliosis compared to A53T/E2 mice. A53T/E2 mice exhibited increased survival and improved motor performance compared to other APOE genotypes. In a complementary model of αSyn spreading, striatal injection of αSyn preformed fibrils induced greater accumulation of αSyn pathology in the substantia nigra of A53T/E4 mice compared to A53T/E2 and A53T/EKO mice. In two separate cohorts of human patients with PD, APOE ε4/ε4 individuals showed the fastest rate of cognitive decline over time. Our results demonstrate that APOE genotype directly regulates αSyn pathology independent of its established effects on Aß and tau, corroborate the finding that APOE ε4 exacerbates pathology, and suggest that APOE ε2 may protect against αSyn aggregation and neurodegeneration in synucleinopathies.


Asunto(s)
Sinucleinopatías , Animales , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Progresión de la Enfermedad , Genotipo , Humanos , Ratones
12.
Ann Neurol ; 87(5): 700-709, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32057125

RESUMEN

Tau hyperphosphorylation is an early step in tau-mediated neurodegeneration and is associated with intracellular aggregation of tau as neurofibrillary tangles, neuronal and synaptic loss, and eventual cognitive dysfunction in Alzheimer disease. Sleep loss increases the cerebrospinal fluid concentration of amyloid-ß and tau. Using mass spectrometry, we measured tau and phosphorylated tau concentrations in serial samples of cerebrospinal fluid collected from participants who were sleep-deprived, treated with sodium oxybate, or allowed to sleep normally. We found that sleep loss affected phosphorylated tau differently depending on the modified site. These findings suggest a mechanism for sleep loss to increase risk of Alzheimer disease. ANN NEUROL 2020;87:700-709.


Asunto(s)
Privación de Sueño/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/metabolismo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosforilación
13.
Neurology ; 94(7): e718-e728, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852813

RESUMEN

OBJECTIVE: To evaluate resting-state functional connectivity as a potential prognostic biomarker of Parkinson disease (PD) progression. The study examined longitudinal changes in cortical resting-state functional connectivity networks in participants with PD compared to controls as well as in relation to baseline protein measures and longitudinal clinical progression. METHODS: Individuals with PD without dementia (n = 64) and control participants (n = 27) completed longitudinal resting-state MRI scans and clinical assessments including full neuropsychological testing after overnight withdrawal of PD medications ("off"). A total of 55 participants with PD and 20 control participants also completed baseline ß-amyloid PET scans and lumbar punctures for CSF protein levels of α-synuclein, ß-amyloid, and tau. Longitudinal analyses were conducted with multilevel growth curve modeling, a type of mixed-effects model. RESULTS: Functional connectivity within the sensorimotor network and the interaction between the dorsal attention network with the frontoparietal control network decreased significantly over time in participants with PD compared to controls. Baseline CSF α-synuclein protein levels predicted decline in the sensorimotor network. The longitudinal decline in the dorsal attention-frontoparietal internetwork strength correlated with the decline in cognitive function. CONCLUSIONS: These results indicate that α-synuclein levels may influence longitudinal declines in motor-related functional connectivity networks. Further, the interaction between cortical association networks declines over time in PD prior to dementia onset and may serve as a prognostic marker for the development of dementia.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Deficiencias en la Proteostasis/diagnóstico por imagen , Deficiencias en la Proteostasis/fisiopatología , Anciano , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Tomografía de Emisión de Positrones , Descanso
14.
J Biol Chem ; 294(17): 6696-6709, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30824544

RESUMEN

Aggregates of the RNA-binding protein TDP-43 (TAR DNA-binding protein) are a hallmark of the overlapping neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The process of TDP-43 aggregation remains poorly understood, and whether it includes formation of intermediate complexes is unknown. Here, we analyzed aggregates derived from purified TDP-43 under semidenaturing conditions, identifying distinct oligomeric complexes at the initial time points before the formation of large aggregates. We found that this early oligomerization stage is primarily driven by TDP-43's RNA-binding region. Specific binding to GU-rich RNA strongly inhibited both TDP-43 oligomerization and aggregation, suggesting that RNA interactions are critical for maintaining TDP-43 solubility. Moreover, we analyzed TDP-43 liquid-liquid phase separation and detected similar detergent-resistant oligomers upon maturation of liquid droplets into solid-like fibrils. These results strongly suggest that the oligomers form during the early steps of TDP-43 misfolding. Importantly, the ALS-linked TDP-43 mutations A315T and M337V significantly accelerate aggregation, rapidly decreasing the monomeric population and shortening the oligomeric phase. We also show that aggregates generated from purified TDP-43 seed intracellular aggregation detected by established TDP-43 pathology markers. Remarkably, cytoplasmic aggregate seeding was detected earlier for the A315T and M337V variants and was 50% more widespread than for WT TDP-43 aggregates. We provide evidence for an initial step of TDP-43 self-assembly into intermediate oligomeric complexes, whereby these complexes may provide a scaffold for aggregation. This process is altered by ALS-linked mutations, underscoring the role of perturbations in TDP-43 homeostasis in protein aggregation and ALS-FTD pathogenesis.


Asunto(s)
Biopolímeros/metabolismo , Proteínas de Unión al ADN/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores/metabolismo , Proteínas de Unión al ADN/genética , Disulfuros/metabolismo , Células HEK293 , Humanos , Peso Molecular , Mutación , Transición de Fase , Pliegue de Proteína , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/metabolismo
15.
J Biol Chem ; 294(3): 1045-1058, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30478174

RESUMEN

Parkinson's disease (PD) and multiple system atrophy (MSA) are distinct clinical syndromes characterized by the pathological accumulation of α-synuclein (α-syn) protein fibrils in neurons and glial cells. These disorders and other neurodegenerative diseases may progress via prion-like mechanisms. The prion model of propagation predicts the existence of "strains" that link pathological aggregate structure and neuropathology. Prion strains are aggregated conformers that stably propagate in vivo and cause disease with defined incubation times and patterns of neuropathology. Indeed, tau prions have been well defined, and research suggests that both α-syn and ß-amyloid may also form strains. However, there is a lack of studies characterizing PD- versus MSA-derived α-syn strains or demonstrating stable propagation of these unique conformers between cells or animals. To fill this gap, we used an assay based on FRET that exploits a HEK293T "biosensor" cell line stably expressing α-syn (A53T)-CFP/YFP fusion proteins to detect α-syn seeds in brain extracts from PD and MSA patients. Both soluble and insoluble fractions of MSA extracts had robust seeding activity, whereas only the insoluble fractions of PD extracts displayed seeding activity. The morphology of MSA-seeded inclusions differed from PD-seeded inclusions. These differences persisted upon propagation of aggregation to second-generation biosensor cells. We conclude that PD and MSA feature α-syn conformers with very distinct biochemical properties that can be transmitted to α-syn monomers in a cell system. These findings are consistent with the idea that distinct α-syn strains underlie PD and MSA and offer possible directions for synucleinopathy diagnosis.


Asunto(s)
Técnicas Biosensibles/métodos , Encéfalo/metabolismo , Atrofia de Múltiples Sistemas/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/análisis , Encéfalo/patología , Células HEK293 , Humanos , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/patología
16.
Biomol NMR Assign ; 12(1): 195-199, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29476328

RESUMEN

Fibrils of the protein α-synuclein (α-syn) are implicated in the pathogenesis of Parkinson's disease and related neurodegenerative disorders. We have reported a high-resolution structure (PDB 2N0A) of an α-syn fibril form prepared by in vitro incubation of monomeric protein in 50 mM sodium phosphate buffer pH 7.4 with 0.1 mM EDTA and 0.01% sodium azide. In parallel with this structure determination, ongoing studies of small molecule ligands binding to α-syn fibrils, prepared in 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) buffer, have been in progress, and it is therefore of interest to determine the structural similarity of these forms. Here we report the 13C and 15N resonance assignments for α-syn fibrils prepared with Tris-HCl buffer (pH 7.7 at 37 °C) and 100 mM NaCl. These fibrillization conditions yield a form with fibril core chemical shifts highly similar to those we reported (BMRB 16939) in the course of determining the high-resolution 2N0A structure, with the exception of some small perturbations from T44 to V55, including two sets of peaks observed for residues T44-V48. Additional differences occur in the patterns of observed residues in the primarily unstructured N-terminus. These results demonstrate a common fold of the fibril core for α-syn fibrils prepared in phosphate or Tris-HCl buffer at moderate ionic strength.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Concentración Osmolar , alfa-Sinucleína/química , Multimerización de Proteína , Estructura Secundaria de Proteína
17.
Bioorg Med Chem Lett ; 28(6): 1011-1019, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29482941

RESUMEN

Here we report the synthesis and in vitro evaluation of 25 new quinolinyl analogues for α-synuclein aggregates. Three lead compounds were subsequently labeled with carbon-11 or fluorine-18 to directly assess their potency in a direct radioactive competitive binding assay ng both α-synuclein fibrils and tissue homogenates from Alzheimer's disease (AD) cases. The modest binding affinities of these three radioligands toward α-synuclein were comparable with results from the Thioflavin T fluorescence assay. However, all three ligand also showed modest binding affinity to the AD homogenates and lack selectivity for α-synuclein. The structure-activity relationship data from these 25 analogues will provide useful information for design and synthesis of new compounds for imaging α-synuclein aggregation.


Asunto(s)
Diseño de Fármacos , Quinolinas/farmacología , alfa-Sinucleína/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Estructura Molecular , Agregado de Proteínas/efectos de los fármacos , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad
18.
J Biol Chem ; 292(22): 9034-9050, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28373279

RESUMEN

The accumulation of α-synuclein (α-syn) fibrils in neuronal inclusions is the defining pathological process in Parkinson's disease (PD). A pathogenic role for α-syn fibril accumulation is supported by the identification of dominantly inherited α-syn (SNCA) gene mutations in rare cases of familial PD. Fibril formation involves a spontaneous nucleation event in which soluble α-syn monomers associate to form seeds, followed by fibril growth during which monomeric α-syn molecules sequentially associate with existing seeds. To better investigate this process, we developed sensitive assays that use the fluorescein arsenical dye FlAsH (fluorescein arsenical hairpin binder) to detect soluble oligomers and mature fibrils formed from recombinant α-syn protein containing an N-terminal bicysteine tag (C2-α-syn). Using seed growth by monomer association (SeGMA) assays to measure fibril growth over 3 h in the presence of C2-α-syn monomer, we observed that some familial PD-associated α-syn mutations (i.e. H50Q and A53T) greatly increased growth rates, whereas others (E46K, A30P, and G51D) decreased growth rates. Experiments with wild-type seeds extended by mutant monomer and vice versa revealed that single-amino acid differences between seed and monomer proteins consistently decreased growth rates. These results demonstrate that α-syn monomer association during fibril growth is a highly ordered process that can be disrupted by misalignment of individual amino acids and that only a subset of familial-PD mutations causes fibril accumulation through increased fibril growth rates. The SeGMA assays reported herein can be utilized to further elucidate structural requirements of α-syn fibril growth and to identify growth inhibitors as a potential therapeutic approach in PD.


Asunto(s)
Amiloide/química , Mutación Missense , Enfermedad de Parkinson , Agregación Patológica de Proteínas , alfa-Sinucleína/química , Sustitución de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
19.
Sci Rep ; 6: 35636, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805057

RESUMEN

Fluselenamyl (5), a novel planar benzoselenazole shows traits desirable of enabling noninvasive imaging of Aß pathophysiology in vivo; labeling of both diffuse (an earlier manifestation of neuritic plaques) and fibrillar plaques in Alzheimer's disease (AD) brain sections, and remarkable specificity for mapping Aß compared with biomarker proteins of other neurodegenerative diseases. Employing AD homogenates, [18F]-9, a PET tracer demonstrates superior (2-10 fold higher) binding affinity than approved FDA tracers, while also indicating binding to high affinity site on Aß plaques. Pharmacokinetic studies indicate high initial influx of [18F]-9 in normal mice brains accompanied by rapid clearance in the absence of targeted plaques. Following incubation in human serum, [18F]-9 indicates presence of parental compound up to 3h thus indicating its stability. Furthermore, in vitro autoradiography studies of [18F]-9 with AD brain tissue sections and ex vivo autoradiography studies in transgenic mouse brain sections show cortical Aß binding, and a fair correlation with Aß immunostaining. Finally, multiphoton- and microPET/CT imaging indicate its ability to penetrate brain and label parenchymal plaques in transgenic mice. Following further validation of its performance in other AD rodent models and nonhuman primates, Fluselenamyl could offer a platform technology for monitoring earliest stages of Aß pathophysiology in vivo.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/fisiopatología , Encéfalo/diagnóstico por imagen , Compuestos de Organoselenio/química , Placa Amiloide/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Autorradiografía/métodos , Sitios de Unión/fisiología , Biomarcadores/líquido cefalorraquídeo , Ratones , Ratones Transgénicos , Compuestos de Organoselenio/síntesis química , Unión Proteica/fisiología
20.
J Neuroinflammation ; 12: 199, 2015 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-26520095

RESUMEN

BACKGROUND: Oxidative stress and inflammation are important factors contributing to the pathophysiology of numerous neurological disorders, including Alzheimer's disease, Parkinson's disease, acute stroke, and infections of the brain. There is well-established evidence that proinflammatory cytokines and glutamate, as well as reactive oxygen species (ROS) and nitric oxide (NO), are produced upon microglia activation, and these are important factors contributing to inflammatory responses and cytotoxic damage to surrounding neurons and neighboring cells. Microglial cells express relatively high levels of cytosolic phospholipase A2 (cPLA2), an enzyme known to regulate membrane phospholipid homeostasis and release of arachidonic acid (AA) for synthesis of eicosanoids. The goal for this study is to elucidate the role of cPLA2IV in mediating the oxidative and inflammatory responses in microglial cells. METHODS: Experiments involved primary microglia cells isolated from transgenic mice deficient in cPLA2α or iPLA2ß, as well as murine immortalized BV-2 microglial cells. Inhibitors of cPLA2/iPLA2/cyclooxygenase (COX)/lipoxygenase (LOX) were used in BV-2 microglial cell line. siRNA transfection was employed to knockdown cPLA2 expression in BV-2 cells. Griess reaction protocol was used to determine NO concentration, and CM-H2DCF-DA was used to detect ROS production in primary microglia and BV-2 cells. WST-1 assay was used to assess cell viability. Western blotting was used to assess protein expression levels. Immunocytochemical staining for phalloidin against F-actin was used to demonstrate cell morphology. RESULTS: In both primary and BV-2 microglial cells, stimulation with lipopolysaccharide (LPS) or interferon gamma (IFNγ) resulted in a time-dependent increase in phosphorylation of cPLA2 together with ERK1/2. In BV-2 cells, LPS- and IFNγ-induced ROS and NO production was inhibited by arachidonyl trifluoromethyl ketone (AACOCF3) and pyrrophenone as well as RNA interference, but not BEL, suggesting a link between cPLA2, and not iPLA2, on LPS/IFNγ-induced nitrosative and oxidative stress in microglial cells. Primary microglial cells isolated from cPLA2α-deficient mice generated significantly less NO and ROS as compared with the wild-type mice. Microglia isolated from iPLA2ß-deficient mice did not show a decrease in LPS-induced NO and ROS production. LPS/IFNγ induced morphological changes in primary microglia, and these changes were mitigated by AACOCF3. Interestingly, despite that LPS and IFNγ induced an increase in phospho-cPLA2 and prostaglandin E2 (PGE2) release, LPS- and IFNγ-induced NO and ROS production were not altered by the COX-1/2 inhibitor but were suppressed by the LOX-12 and LOX-15 inhibitors instead. CONCLUSIONS: In summary, the results in this study demonstrated the role of cPLA2 in microglial activation with metabolic links to oxidative and inflammatory responses, and this was in part regulated by the AA metabolic pathways, namely the LOXs. Further studies with targeted inhibition of cPLA2/LOX in microglia during neuroinflammatory conditions can be valuable to investigate the therapeutic potential in ameliorating neurological disease pathology.


Asunto(s)
Citosol/enzimología , Lipooxigenasa/metabolismo , Microglía/enzimología , Óxido Nítrico/metabolismo , Fosfolipasas A2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Femenino , Inflamación/enzimología , Inflamación/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microglía/efectos de los fármacos , Fosfolipasas A2/genética , Cultivo Primario de Células , Prostaglandina-Endoperóxido Sintasas/fisiología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...