Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Respir Res ; 23(1): 77, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361214

RESUMEN

BACKGROUND: There is a link between exposure to air pollution and the increased prevalence of chronic obstructive pulmonary disease (COPD) and declining pulmonary function, but the association with O2 desaturation during exercise in COPD patients with emphysema is unclear. Our aims were to estimate the prevalence of O2 desaturation during exercise in patients with COPD, and determine the association of exposure to air pollution with exercise-induced desaturation (EID), the degree of emphysema, and dynamic hyperinflation (DH). METHODS: We assessed the effects of 10-year prior to the HRCT assessment and 7 days prior to the six-minute walking test exposure to particulate matter with an aerodynamic diameter of < 10 µm (PM10) or of < 2.5 µM (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in patients with emphysema in this retrospective cohort study. EID was defined as a nadir standard pulse oximetry (SpO2) level of < 90% or a delta (△)SpO2 level of ≥ 4%. Ambient air pollutant (PM2.5, PM10, O3, and NO2) data were obtained from Taiwan Environmental Protection Administration (EPA) air-monitoring stations, usually within 10 km to each participant's home address. RESULTS: We recruited 141 subjects with emphysema. 41.1% of patients with emphysema exhibited EID, and patients with EID had more dyspnea, worse lung function, more severe emphysema, more frequent acute exacerbations, managed a shorter walking distance, had DH, and greater long-term exposure to air pollution than those without EID. We observed that levels of 10-year concentrations of PM10, PM2.5, and NO2 were significantly associated with EID, PM10 and PM2.5 were associated with the severity of emphysema, and associated with DH in patients with emphysema. In contrast, short-term exposure did not have any effect on patients. CONCLUSION: Long-term exposure to ambient PM10, PM2.5 and NO2, but not O3, was associated with EID.


Asunto(s)
Contaminación del Aire , Ozono , Enfermedad Pulmonar Obstructiva Crónica , Contaminación del Aire/efectos adversos , Ejercicio Físico , Humanos , Ozono/efectos adversos , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Estudios Retrospectivos
2.
Front Med (Lausanne) ; 8: 705792, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621758

RESUMEN

The development of emphysema has been linked to air pollution; however, the association of air pollution with the extent of lobar emphysema remains unclear. This study examined the association of particulate matter <2.5 µm in aerodynamic diameters (PM2.5) (≤2.5 µm), nitrogen dioxide (NO2), and ozone (O3) level of exposure with the presence of emphysema in 86 patients with chronic obstructive pulmonary disease (COPD). Exposure to the air pollution estimated using the land-use regression model was associated with lung function, BODE (a body mass index, degree of obstruction, dyspnea severity, and exercise capacity index) quartiles, and emphysema measured as low-attenuation areas on high-resolution CT (HR-CT) lung scans. Using paraseptal emphysema as the reference group, we observed that a 1 ppb increase in O3 was associated with a 1.798-fold increased crude odds ratio of panlobular emphysema (p < 0.05). We observed that PM2.5 was associated with BODE quartiles, modified Medical Research Council (mMRC) dyspnea score, and exercise capacity (all p < 0.05). We found that PM2.5, NO2, and O3 were associated with an increased degree of upper lobe emphysema and lower lobe emphysema (all p < 0.05). Furthermore, we observed that an increase in PM2.5, NO2, and O3 was associated with greater increases in upper lobe emphysema than in lower lobe emphysema. In conclusion, exposure to O3 can be associated with a higher risk of panlobular emphysema than paraseptal emphysema in patients with COPD. Emphysema severity in lung lobes, especially the upper lobes, may be linked to air pollution exposure in COPD.

3.
ERJ Open Res ; 7(3)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34476255

RESUMEN

The novelty of this study is that it identified the associations between PM2.5 deposition in the lung and the degree of emphysema in different lung lobes of COPD patients, especially in the right middle lobe and both upper lobes https://bit.ly/3k21ri0.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA