Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 108(5): L052201, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115488

RESUMEN

Flat band systems can yield interesting phenomena, such as dispersion suppression of waves with frequency at the band. While linear transport vanishes, the corresponding nonlinear case is still an open question. Here, we study power transmission along nonlinear sawtooth lattices due to waves with the flat band frequency injected at one end. While there is no power transfer for small intensity, there is a threshold amplitude above which a surge of power transmission occurs, i.e., supratransmission, for defocusing nonlinearity. This is due to a nonlinear evanescent wave with the flat band frequency that becomes unstable. We show that dispersion suppression and supratransmission also exist even when the band is nearly flat.

2.
Sci Rep ; 12(1): 6905, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484270

RESUMEN

The plasma sheath of a three ion species plasma is studied numerically, relying on the results of the experiment by Yip et al. (Phys. Plasmas 23:050703 (2016) to measure the positive ion velocities at the sheath edge. The positive ion species ([Formula: see text], [Formula: see text] and [Formula: see text]) are assumed to be singly charged and to be characterized by the same temperature. It is shown that the sheath characteristics, viz. the particle number densities, the electrostatic potential and the space charge density profile in the sheath all depend on the [Formula: see text] concentration that is gradually added to the argon-xenon plasma as the third positive ion species. Also, the effect of ion-neutral collisions on the sheath properties is investigated numerically. Our results may be extended to a multi-ion plasma with more than two species of positive ions.

3.
Sci Rep ; 11(1): 6174, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731733

RESUMEN

A one-dimensional multifluid hydrodynamic model has been adopted as basis for an investigation of the role of suprathermal electrons on the wave breaking amplitude limit for electrostatic excitations propagating in an electronegative plasma. A three-component plasma is considered, consisting of two inertial cold ion populations of opposite signs, evolving against a uniform background of (non-Maxwellian) electrons. A kappa-type (non-Maxwellian) distribution function is adopted for the electrons. By employing a traveling wave approximation, the first integral for the fluid-dynamical system has been derived, in the form of a pseudo-energy balance equation, and analyzed. The effect of intrinsic plasma parameters (namely the ion density ratio, the ion mass ratio, and the superthermal index of the nonthermal electrons) on the wave breaking amplitude limit is explored, by analyzing the phase space topology of the associated pseudopotential function. Our results are relevant to particle acceleration in Space environments and to recent experiments based on plasma-based accelerator schemes, where the simultaneous presence of negative ions and nonthermal electrons may be observed.

4.
Phys Rev E ; 96(4-1): 043206, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29347504

RESUMEN

Understanding the transport properties of charged particle beams is important not only from a fundamental point of view but also due to its relevance in a variety of applications. A theoretical model is established in this article, to model the interaction of a tenuous positively charged ion beam with an ultradense quantum electron-ion plasma, by employing a rigorous relativistic quantum-hydrodynamic (fluid plasma) electrostatic model proposed in McKerr et al. [M. McKerr, F. Haas, and I. Kourakis, Phys. Rev. E 90, 033112 (2014)PLEEE81539-375510.1103/PhysRevE.90.033112]. A nonlinear analysis is carried out to elucidate the propagation characteristics and the existence conditions of large amplitude electrostatic solitary waves propagating in the plasma in the presence of the beam. Anticipating stationary profile excitations, a pseudomechanical energy balance formalism is adopted to reduce the fluid evolution equation to an ordinary differential equation. Exact solutions are thus obtained numerically, predicting localized excitations (pulses) for all of the plasma state variables, in response to an electrostatic potential disturbance. An ambipolar electric field form is also obtained. Thorough analysis of the reality conditions for all variables is undertaken in order to determine the range of allowed values for the solitonic pulse speed and how it varies as a function of the beam characteristics (beam velocity and density).

5.
Phys Rev E ; 94(5-1): 053202, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27967187

RESUMEN

The self-similar expansion of multispecies ion plasma is investigated by a two-ion fluid model with adiabatic equation of state for each ionic species. Our aim is to elucidate the effect of secondary ions on a plasma expansion front, in combination with energetic (suprathermal) electrons in the background, modeled by a kappa-type distribution function. The plasma density, velocity, and electric-field profile is investigated. It is shown that energetic electrons have a significant effect on the expansion front dynamics, essentially energizing the front, thus enhancing the ion acceleration mechanism. Different special cases are considered as regards the relative magnitude of the ion mass and/or charge state.

6.
Phys Rev E ; 94(2-2): 029903, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27627431

RESUMEN

This corrects the article DOI: 10.1103/PhysRevE.91.033102.

7.
Phys Rev E ; 93(2): 023206, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26986431

RESUMEN

The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included.

8.
Artículo en Inglés | MEDLINE | ID: mdl-25871219

RESUMEN

Linearly polarized solitary waves, arising from the interaction of an intense laser pulse with a plasma, are investigated. Localized structures, in the form of exact numerical nonlinear solutions of the one-dimensional Maxwell-fluid model for a cold plasma with fixed ions, are presented. Unlike stationary circularly polarized solitary waves, the linear polarization gives rise to a breather-type behavior and a periodic exchange of electromagnetic energy and electron kinetic energy at twice the frequency of the wave. A numerical method based on a finite-differences scheme allows us to compute a branch of solutions within the frequency range Ωmin<Ω<ωpe, where ωpe and Ωmin are the electron plasma frequency and the frequency value for which the plasma density vanishes locally, respectively. A detailed description of the spatiotemporal structure of the waves and their main properties as a function of Ω is presented. Small-amplitude oscillations appearing in the tail of the solitary waves, a consequence of the linear polarization and harmonic excitation, are explained with the aid of the Akhiezer-Polovin system. Direct numerical simulations of the Maxwell-fluid model show that these solitary waves propagate without change for a long time.

9.
Artículo en Inglés | MEDLINE | ID: mdl-24827351

RESUMEN

Electrostatic dust-acoustic shock waves are investigated in a viscous, complex plasma consisting of dust particles, electrons, and ions. The system is modelled using the generalized hydrodynamic equations, with strong coupling between the dust particles being accounted for by employing the effective electrostatic temperature approach. Using a reductive perturbation method, it is demonstrated that this model predicts the existence of weakly nonlinear dust-acoustic shock waves, arising as solutions to Burgers's equation, in which the nonlinear forces are balanced by dissipative forces, in this case, associated with viscosity. The evolution and stability of dust-acoustic shocks is investigated via a series of numerical simulations, which confirms our analytical predictions on the shock characteristics.

10.
Artículo en Inglés | MEDLINE | ID: mdl-25615203

RESUMEN

We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude.

11.
Artículo en Inglés | MEDLINE | ID: mdl-24032948

RESUMEN

Recently, a hybrid distribution function [Tribeche et al., Phys. Rev. E 85, 037401 (2012)] was proposed to describe a plasma species with an enhanced superthermal component. This combines a Cairns-type "nonthermal" form with the Tsallis theory for nonextensive thermodynamics. Using this alternative model, the propagation of arbitrary amplitude ion acoustic solitary waves in a two-component plasma is investigated. From a careful study of the distribution function it is found that the model itself is valid only for a very restricted range in the q-nonextensive parameter and the nonthermality parameter, α. Solitary waves, the amplitude and nature of which depend sensitively on both q and α, can exist within a narrow range of allowable Mach numbers. Both positive and negative potential structures are found, and coexistence may occur.

12.
Artículo en Inglés | MEDLINE | ID: mdl-23848793

RESUMEN

Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.

13.
Phys Rev Lett ; 110(20): 205001, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-25167421

RESUMEN

We report on the temporally and spatially resolved detection of the precursory stages that lead to the formation of an unmagnetized, supercritical collisionless shock in a laser-driven laboratory experiment. The measured evolution of the electrostatic potential associated with the shock unveils the transition from a current free double layer into a symmetric shock structure, stabilized by ion reflection at the shock front. Supported by a matching particle-in-cell simulation and theoretical considerations, we suggest that this process is analogous to ion reflection at supercritical collisionless shocks in supernova remnants.

14.
Phys Rev Lett ; 109(20): 205002, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23215496

RESUMEN

The dynamics of magnetic fields with an amplitude of several tens of megagauss, generated at both sides of a solid target irradiated with a high-intensity (~10(19) W/cm(2)) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 2): 066404, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23368056

RESUMEN

Dust-acoustic waves are investigated in a three-component plasma consisting of strongly coupled dust particles and Maxwellian electrons and ions. A fluid model approach is used, with the effects of strong coupling being accounted for by an effective electrostatic "pressure" which is a function of the dust number density and the electrostatic potential. Both linear and weakly nonlinear cases are considered by derivation and analysis of the linear dispersion relation and the Korteweg-de Vries equation, respectively. In contrast to previous studies using this model, this paper presents the results arising from an expansion of the dynamical form of the electrostatic pressure, accounting for the variations in its value in the vicinity of the wave.

16.
Phys Rev Lett ; 107(2): 025003, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21797614

RESUMEN

A two-dimensional numerical study of the expansion of a dense plasma through a more rarefied one is reported. The electrostatic ion-acoustic shock, which is generated during the expansion, accelerates the electrons of the rarefied plasma inducing a superthermal population which reduces electron thermal anisotropy. The Weibel instability is therefore not triggered and no self-generated magnetic fields are observed, in contrast with published theoretical results dealing with plasma expansion into vacuum. The shock front develops a filamentary structure which is interpreted as the consequence of the electrostatic ion-ion instability, consistently with published analytical models and experimental results.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 2): 016402, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20866742

RESUMEN

The spatiotemporal pulse dynamics of a high-power relativistic laser pulse interacting with an electron-positron-ion plasmas is investigated theoretically and numerically. The occurrence of pulse compression is studied. The dependence of the mechanism on the concentration of the background ions in electron positron plasma is emphasized.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 2): 026402, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19792263

RESUMEN

The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(3 Pt 2): 037601, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19392088

RESUMEN

Starting from Maxwell's equations, we use the reductive perturbation method to derive a second-order and a third-order nonlinear Schrödinger equation, describing ultrashort solitons in nonlinear left-handed metamaterials. We find necessary conditions and derive exact bright and dark soliton solutions of these equations for the electric and magnetic field envelopes.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(6 Pt 2): 066610, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19256971

RESUMEN

We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schrödinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-lattice-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the "hexapole" of alternating phases (0-pi) , as well as the vortex of topological charge S=2 have intervals of stability; among three-site states, only the vortex of topological charge S=1 may be stable in the case of focusing nonlinearity. These conclusions are confirmed both for hexagonal and for honeycomb lattices by means of detailed numerical bifurcation analysis of the stationary states from the anticontinuum limit, and by direct simulations to monitor the dynamical instabilities, when the latter arise. The dynamics reveal a wealth of nonlinear behavior resulting not only in single-site solitary wave forms, but also in robust multisite breathing structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...