Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 78, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539208

RESUMEN

BACKGROUND: Accumulation of tau leads to neuroinflammation and neuronal cell death in tauopathies, including Alzheimer's disease. As the disease progresses, there is a decline in brain energy metabolism. However, the role of tau protein in regulating lipid metabolism remains less characterized and poorly understood. METHODS: We used a transgenic rat model for tauopathy to reveal metabolic alterations induced by neurofibrillary pathology. Transgenic rats express a tau fragment truncated at the N- and C-terminals. For phenotypic profiling, we performed targeted metabolomic and lipidomic analysis of brain tissue, CSF, and plasma, based on the LC-MS platform. To monitor disease progression, we employed samples from transgenic and control rats aged 4, 6, 8, 10, 12, and 14 months. To study neuron-glia interplay in lipidome changes induced by pathological tau we used well well-established multicomponent cell model system. Univariate and multivariate statistical approaches were used for data evaluation. RESULTS: We showed that tau has an important role in the deregulation of lipid metabolism. In the lipidomic study, pathological tau was associated with higher production of lipids participating in protein fibrillization, membrane reorganization, and inflammation. Interestingly, significant changes have been found in the early stages of tauopathy before the formation of high-molecular-weight tau aggregates and neurofibrillary pathology. Increased secretion of pathological tau protein in vivo and in vitro induced upregulated production of phospholipids and sphingolipids and accumulation of lipid droplets in microglia. We also found that this process depended on the amount of extracellular tau. During the later stages of tauopathy, we found a connection between the transition of tau into an insoluble fraction and changes in brain metabolism. CONCLUSION: Our results revealed that lipid metabolism is significantly affected during different stages of tau pathology. Thus, our results demonstrate that the dysregulation of lipid composition by pathological tau disrupts the microenvironment, further contributing to the propagation of pathology.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratas , Animales , Ratones , Proteínas tau/genética , Proteínas tau/metabolismo , Ovillos Neurofibrilares/metabolismo , Metabolismo de los Lípidos , Tauopatías/patología , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Ratas Transgénicas , Ratones Transgénicos , Modelos Animales de Enfermedad
2.
Int J Neonatal Screen ; 9(4)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37873851

RESUMEN

Newborn screening (NBS) of inborn errors of metabolism (IEMs) is based on the reference ranges established on a healthy newborn population using quantile statistics of molar concentrations of biomarkers and their ratios. The aim of this paper is to investigate whether multivariate independent component analysis (ICA) is a useful tool for the analysis of NBS data, and also to address the structure of the calculated ICA scores. NBS data were obtained from a routine NBS program performed between 2013 and 2022. ICA was tested on 10,213/150 free-diseased controls and 77/20 patients (9/3 different IEMs) in the discovery/validation phases, respectively. The same model computed during the discovery phase was used in the validation phase to confirm its validity. The plots of ICA scores were constructed, and the results were evaluated based on 5sd levels. Patient samples from 7/3 different diseases were clearly identified as 5sd-outlying from control groups in both phases of the study. Two IEMs containing only one patient each were separated at the 3sd level in the discovery phase. Moreover, in one latent variable, the effect of neonatal birth weight was evident. The results strongly suggest that ICA, together with an interpretation derived from values of the "average member of the score structure", is generally applicable and has the potential to be included in the decision process in the NBS program.

3.
Neuroscience ; 496: 165-178, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35636730

RESUMEN

Neuroinflammation is an important feature in the pathogenesis and progression of central nervous system (CNS) diseases including Alzheimer's disease (AD). One of the widely used animal models of peripherally induced neuroinflammation and neurodegeneration is a lipopolysaccharide (LPS)-induced inflammation mouse model. An acute LPS administration has been widely used for investigation of inflammation-associated disease and testing inflammation-targeting drug candidates. In the present metabolomic, lipidomic and proteomic study, we investigated short-term effects of systemic inflammation induced by LPS administration on the mouse plasma and brain cortical and hippocampal metabolome, lipidome as well as expression of the brain cortical proteins which were shown to be involved in inflammation-associated CNS diseases. From a global perspective, the hippocampus was more vulnerable to the effects of LPS-induced systemic inflammation than the cortex. In addition, the study revealed several brain region-specific changes in metabolic pathways and lipids, such as statistically significant increase in several cortical and hippocampal phosphatidylcholines/phosphatidylethanolamines, and significantly decreased levels of brain cortical betaine after LPS treatment in mice. Moreover, LPS treatment in mice caused significantly increased protein expression of GluN1 receptor in the brain cortex. The revealed perturbations in the LPS-induced inflammation mouse model may give insight into the mechanisms underlying inflammation-associated CNS diseases. In addition, the finding of the study provide important information about the appropriate use of the model during target validation and drug candidate testing.


Asunto(s)
Lipidómica , Lipopolisacáridos , Animales , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones , Proteómica
4.
Metabolites ; 12(3)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35323684

RESUMEN

Three genetically determined enzyme defects of purine de novo synthesis (PDNS) have been identified so far in humans: adenylosuccinate lyase (ADSL) deficiency, 5-amino-4-imidazole carboxamide-ribosiduria (AICA-ribosiduria), and deficiency in bifunctional enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS). Clinical signs of these defects are mainly neurological, such as seizures, psychomotor retardation, epilepsy, autistic features, etc. This work aims to describe the metabolic changes of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual steps of PDNS to better understand known and potential defects of the pathway in humans. High-performance liquid chromatography coupled with mass spectrometry was used for both targeted and untargeted metabolomic analyses. The statistically significant features from the untargeted study were identified by fragmentation analysis. Data from the targeted analysis were processed in Cytoscape software to visualize the most affected metabolic pathways. Statistical significance of PDNS intermediates preceding deficient enzymes was the highest (p-values 10 × 10-7-10 × 10-15) in comparison with the metabolites from other pathways (p-values of up to 10 × 10-7). Disturbed PDNS resulted in an altered pool of adenine and guanine nucleotides. However, the adenylate energy charge was not different from controls. Different profiles of acylcarnitines observed among deficient cell lines might be associated with a specific enzyme deficiency rather than global changes related to the PDNS pathway. Changes detected in one-carbon metabolism might reduce the methylation activity of the deficient cells, thus affecting the modification state of DNA, RNA, and proteins.

5.
Sci Rep ; 11(1): 13076, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158563

RESUMEN

Peripheral infections followed by systemic inflammation may contribute to the onset of Alzheimer`s disease (AD) and accelerate the disease progression later in life. Yet, the impact of systemic inflammation on the plasma and brain tissue metabolome and lipidome in AD has not been investigated. In this study, targeted metabolomic and untargeted lipidomic profiling experiments were performed on the plasma, cortices, and hippocampi of wild-type (WT) mice and transgenic APdE9 mice after chronic lipopolysaccharide (LPS) treatment, as well as saline-treated APdE9 mice. The lipidome and the metabolome of these mice were compared to saline-treated WT animals. In the brain tissue of all three models, the lipidome was more influenced than the metabolome. The LPS-treated APdE9 mice had the highest number of changes in brain metabolic pathways with significant alterations in levels of lysine, myo-inositol, spermine, phosphocreatine, acylcarnitines and diacylglycerols, which were not observed in the saline-treated APdE9 mice. In the WT mice, the effect of the LPS administration on metabolome and lipidome was negligible. The study provided exciting information about the biochemical perturbations due to LPS-induced inflammation in the transgenic AD model, which can significantly enhance our understanding of the role of systemic inflammation in AD pathogenesis.


Asunto(s)
Precursor de Proteína beta-Amiloide/inmunología , Encéfalo/metabolismo , Inflamación/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Lipidómica/métodos , Masculino , Metaboloma , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/metabolismo
6.
JIMD Rep ; 54(1): 79-86, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32685354

RESUMEN

3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is a rare autosomal recessively inherited metabolic disorder. Patients suffer from avoidable neurologically devastating metabolic decompensations and thus would benefit from newborn screening (NBS). The diagnosis is currently made by measuring dry blood spot acylcarnitines (C5OH and C6DC) followed by urinary organic acid profiling for the differential diagnosis from several other disorders. Using untargeted metabolomics (reversed-phase UHPLC coupled to an Orbitrap Elite hybrid mass spectrometer) of plasma samples from 5 HMGCLD patients and 19 age-matched controls, we found 3-methylglutaconic acid and 3-hydroxy-3-methylglutaric acid, together with 3-hydroxyisovalerylcarnitine as the most discriminating metabolites between the groups. In order to evaluate the NBS potential of these metabolites we quantified the most discriminating metabolites from untargeted metabolomics in 23 blood spots from 4 HMGCLD patients and 55 controls by UHPLC tandem mass spectrometry. The results provide a tool for expanded NBS of HMGCLD using tandem mass spectrometry. Selected reaction monitoring transition 262/85 could be used in a first-tier NBS analysis to screen for elevated 3-hydroxyisovalerylcarnitine. In a positive case, a second-tier analysis of 3-hydroxy-3-methylglutaric acid and 3-methylglutaconic acid in a dry blood spot using UHPLC tandem mass spectrometry instruments confirms the diagnosis. In conclusion, we describe the identification of new diagnostic biomarkers for HMGCLD and their application in NBS in dry blood spots. By using second-tier testing, all patients with HMGCLD were unequivocally and correctly diagnosed.

7.
J Chemom ; 34(1): e3182, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32189829

RESUMEN

Data outliers can carry very valuable information and might be most informative for the interpretation. Nevertheless, they are often neglected. An algorithm called cellwise outlier diagnostics using robust pairwise log ratios (cell-rPLR) for the identification of outliers in single cell of a data matrix is proposed. The algorithm is designed for metabolomic data, where due to the size effect, the measured values are not directly comparable. Pairwise log ratios between the variable values form the elemental information for the algorithm, and the aggregation of appropriate outlyingness values results in outlyingness information. A further feature of cell-rPLR is that it is useful for biomarker identification, particularly in the presence of cellwise outliers. Real data examples and simulation studies underline the good performance of this algorithm in comparison with alternative methods.

8.
Bioinformatics ; 36(9): 2941-2942, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31930393

RESUMEN

SUMMARY: Untargeted liquid chromatography-high-resolution mass spectrometry analysis produces a large number of features which correspond to the potential compounds in the sample that is analyzed. During the data processing, it is necessary to merge features associated with one compound to prevent multiplicities in the data and possible misidentification. The processing tools that are currently employed use complex algorithms to detect abundances, such as adducts or isotopes. However, most of them are not able to deal with unpredictable adducts and in-source fragments. We introduce a simple open-source R-script CROP based on Pearson pairwise correlations and retention time together with a graphical representation of the correlation network to remove these redundant features. AVAILABILITY AND IMPLEMENTATION: The CROP R-script is available online at www.github.com/rendju/CROP under GNU GPL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metabolómica , Programas Informáticos , Algoritmos , Cromatografía Liquida , Espectrometría de Masas
9.
Planta ; 251(1): 1, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776777

RESUMEN

MAIN CONCLUSION: Five poplar CHASE-containing histidine kinase receptors bind cytokinins and display kinase activities. Both endogenous isoprenoid and aromatic cytokinins bind to the receptors in live cell assays. Cytokinins are phytohormones that play key roles in various developmental processes in plants. The poplar species Populus × canadensis, cv. Robusta, is the first organism found to contain aromatic cytokinins. Here, we report the functional characterization of five CHASE-containing histidine kinases from P. × canadensis: PcHK2, PcHK3a, PcHK3b, PcHK4a and PcHK4b. A qPCR analysis revealed high transcript levels of all PcHKs other than PcHK4b across multiple poplar organs. The ligand specificity was determined using a live cell Escherichia coli assay and we provide evidence based on UHPLC-MS/MS data that ribosides can be true ligands. PcHK2 exhibited higher sensitivity to iP-type cytokinins than the other receptors, while PcHK3a and PcHK3b bound these cytokinins much more weakly, because they possess two isoleucine residues that clash with the cytokinin base and destabilize its binding. All receptors display kinase activity but their activation ratios in the presence/absence of cytokinin differ significantly. PcHK4a displays over 400-fold higher kinase activity in the presence of cytokinin, suggesting involvement in strong responses to changes in cytokinin levels. trans-Zeatin was both the most abundant cytokinin in poplar and that with the highest variation in abundance, which is consistent with its strong binding to all five HKs and activation of cytokinin signaling via A-type response regulators. The aromatic cytokinins' biological significance remains unclear, their levels vary diurnally, seasonally, and annually. PcHK3 and PcHK4 display the strongest binding at pH 7.5 and 5.5, respectively, in line with their putative membrane localization in the endoplasmic reticulum and plasma membrane.


Asunto(s)
Citocininas/metabolismo , Histidina Quinasa/metabolismo , Populus/metabolismo , Espectrometría de Masas en Tándem , Terpenos/metabolismo
10.
Planta ; 250(1): 229-244, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30980246

RESUMEN

MAIN CONCLUSION: Isoprenoid and aromatic cytokinins occur in poplar as free compounds and constituents of tRNA, poplar isopentenyltransferases are involved in the production of isoprenoid cytokinins, while biosynthesis of their aromatic counterparts remains unsolved. Cytokinins are phytohormones with a fundamental role in the regulation of plant growth and development. They occur naturally either as isoprenoid or aromatic derivatives, but the latter are quite rare and less studied. Here, the spatial expression of all nine isopentenyl transferase genes of Populus × canadensis cv. Robusta (PcIPTs) as analyzed by RT-qPCR revealed a tissue preference and strong differences in expression levels for the different adenylate and tRNA PcIPTs. Together with their phylogeny, this result suggests a functional diversification for the different PcIPT proteins. Additionally, the majority of PcIPT genes were cloned and expressed in Arabidopsis thaliana under an inducible promoter. The cytokinin levels measured in the Arabidopsis-overexpressing lines as well as their phenotype indicate that the studied adenylate and tRNA PcIPT proteins are functional in vivo and thus will contribute to the cytokinin pool in poplar. We screened the cytokinin content in leaves of 12 Populus species by ultra-high performance-tandem mass spectrometry (UHPLC-MS/MS) and discovered that the capacity to produce not only isoprenoid, but also aromatic cytokinins is widespread amongst the Populus accessions studied. Important for future studies is that the levels of aromatic cytokinins transiently increase after daybreak and are much higher in older plants.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Citocininas/biosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Populus/genética , Transferasas Alquil y Aril/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/metabolismo , Espectrometría de Masas en Tándem
11.
Plant Cell Environ ; 40(7): 1189-1196, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28102542

RESUMEN

Silicate minerals are dominant soil components. Thus, plant roots are constantly exposed to silicic acid. High silicon intake, enabled by root silicon transporters, correlates with increased tolerance to many biotic and abiotic stresses. However, the underlying protection mechanisms are largely unknown. Here, we tested the hypothesis that silicon interacts with the plant hormones, and specifically, that silicic acid intake increases cytokinin biosynthesis. The reaction of sorghum (Sorghum bicolor) and Arabidopsis plants, modified to absorb high versus low amounts of silicon, to dark-induced senescence was monitored, by quantifying expression levels of genes along the senescence pathway and measuring tissue cytokinin levels. In both species, detached leaves with high silicon content senesced more slowly than leaves that were not exposed to silicic acid. Expression levels of genes along the senescence pathway suggested increased cytokinin biosynthesis with silicon exposure. Mass spectrometry measurements of cytokinin suggested a positive correlation between silicon exposure and active cytokinin concentrations. Our results indicate a similar reaction to silicon treatment in distantly related plants, proposing a general function of silicon as a stress reliever, acting via increased cytokinin biosynthesis.


Asunto(s)
Arabidopsis/metabolismo , Citocininas/biosíntesis , Hojas de la Planta/fisiología , Silicio/farmacología , Sorghum/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Silicio/metabolismo , Sorghum/efectos de los fármacos , Sorghum/genética
12.
Plant Cell ; 28(7): 1602-15, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27385816

RESUMEN

Leaf morphogenesis and differentiation are highly flexible processes, resulting in a large diversity of leaf forms. The development of compound leaves involves an extended morphogenesis stage compared with that of simple leaves, and the tomato (Solanum lycopersicum) mutant clausa (clau) exposes a potential for extended morphogenesis in tomato leaves. Here, we report that the CLAU gene encodes a MYB transcription factor that has evolved a unique role in compound-leaf species to promote an exit from the morphogenetic phase of tomato leaf development. We show that CLAU attenuates cytokinin signaling, and that clau plants have increased cytokinin sensitivity. The results suggest that flexible leaf patterning involves a coordinated interplay between transcription factors and hormones.


Asunto(s)
Citocininas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Solanum lycopersicum/genética , Mutación/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...