Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 27(4): 687-701, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33967456

RESUMEN

The natural capacity of plants to endure salt stress is largely regulated by multifaceted structural and physio-biochemical modulations. Salt toxicity endurance mechanism of six ecotypes of Typha domingensis Pers. was evaluated by analyzing photosynthesis, ionic homeostasis, and stomatal physiology under different levels of salinity (0, 100, 200 and 300 mM NaCl). Typha populations were collected across different areas of Punjab, an eastern province in Pakistan. All studied attributes among ecotypes presented differential changes as compared to control. Different salt treatments not only affected gas exchange attributes but also shown significant modifications in stomatal anatomical changes. As compared to control, net photosynthetic rate, transpiration rate, total chlorophyll contents and carotenoids were increased by 111%, 64%, 103% and 171% respectively, in Sahianwala ecotype among all other ecotypes. Similarly, maximum water use efficiency (WUE), sub stomatal CO2 concentration, sodium (Na+) and chloride (Cl-) contents were observed in Sahianwala (191%, 93%, 168%, 158%) and Knotti (162%, 75%, 146%, 182%) respectively, as compared to the others ecotypes. Adaxial and abaxial stomatal areas remained stable in Sahianwala and Knotti. The highest abaxial stomatal density was observed in Gatwala ecotype (42 mm2) and maximum adaxial stomatal density was recorded in Sahianwala ecotype (43 mm2) at 300 mM NaCl salinity. The current study showed that Typha ecotypes responded varyingly to salinity in terms of photosynthesis attributes to avoid damages due to salinity. Overall, differential photosynthetic activity, WUE, and changes in stomatal attributes of Sahianwala and Knotti ecotypes contributed more prominently in tolerating salinity stress. Therefore, Typha domingensis is a potential species to be used to rehabilitate salt affected lands for agriculture and aquatic habitat. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00963-x.

2.
Plant Physiol Biochem ; 119: 9-20, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28841544

RESUMEN

The N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) superfamily, specifically the SNAP25-type proteins and t-SNAREs, have been proposed to regulate cellular processes and plant resistance mechanisms. However, little is known about the role of SNAP25-type proteins in combating abiotic stresses, specifically in wild soybean. In the current study, the isolation and functional characterization of the putative synaptosomal-associated SNAP25-type protein gene GsSNAP33 from wild soybean (Glycine soja) were performed. GsSNAP33 has a molecular weight of 33,311 Da and comprises 300 amino acid residues along with Qb-Qc SNARE domains. Multiple sequence alignment revealed the highest similarity of the GsSNAP33 protein to GmSNAP33 (91%), VrSNAP33 (89%), PvSNAP33 (86%) and AtSNAP33 (63%). Phylogenetic studies revealed the abundance of SNAP33 proteins mostly in dicotyledons. Quantitative real-time PCR assays confirmed that GsSNAP33 expression can be induced by salt, alkali, ABA and PEG treatments and that GsSNAP33 is highly expressed in the pods, seeds and roots of Glycine soja. Furthermore, the overexpression of the GsSNAP33 gene in WT Arabidopsis thaliana resulted in increased germination rates, greater root lengths, improved photosynthesis, lower electrolyte leakage, higher biomass production and up-regulated expression levels of various stress-responsive marker genes, including KINI, COR15A, P5Cs, RAB18, RD29A and COR47 in transgenic lines compared with those in WT lines. Subcellular localization studies revealed that the GsSNAP33-eGFP fusion protein was localized to the plasma membrane, while eGFP was distributed throughout whole cytoplasm of onion epidermal cells. Collectively, our findings suggest that GsSNAP33, a novel plasma membrane protein gene of Glycine soja, might be involved in improving plant responses to salt and drought stresses in Arabidopsis.


Asunto(s)
Arabidopsis , Deshidratación , Glycine max/genética , Presión Osmótica , Proteínas de Plantas , Plantas Modificadas Genéticamente , Proteínas Qb-SNARE , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Deshidratación/genética , Deshidratación/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Qb-SNARE/biosíntesis , Proteínas Qb-SNARE/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...