Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; : e16332, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38762794

RESUMEN

PREMISE: Apomixis in ferns is relatively common and obligatory. Sterile hybrids may restore fertility via apomixis at a cost of long-term genetic stagnation. In this study, we outlined apomixis as a possible temporary phase leading to sexuality and analyzed factors relating to transitioning to and away from apomixis, such as unreduced and reduced spore formation in apomict and apo-sex hybrid ferns. METHODS: We analyzed the genome size of 15 fern species or hybrids ("taxa") via flow cytometry. The number of reduced and unreduced gametophytes was established as a proxy for viable spore formation of either type. We also calculated the spore abortion ratio (sign of reduced spores) in several taxa, including the apo-sex hybrid Dryopteris × critica and its 16 apomictically formed offspring. RESULTS: Four of 15 sampled taxa yielded offspring variable in genome size. Specifically, each variable taxon formed one viable reduced plant among 12-451 sampled gametophytes per taxon. Thus, haploid spore formation in the studied apomicts was very rare but possible. Spore abortion analyses indicated gradually decreasing abortion (haploid spore formation) over time. In Dryopteris × critica, abortion decreased from 93.8% to mean 89.5% in one generation. CONCLUSIONS: Our results support apomixis as a transitionary phase toward sexuality. Newly formed apomicts hybridize with sexual relatives and continue to form haploid spores early on. Thus, they may get the genomic content necessary for regular meiosis and restore sexuality. If the missing relative goes extinct, the lineage gets locked into apomixis as may be the case with the Dryopteris affinis complex.

2.
Mol Ecol ; : e17256, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180347

RESUMEN

Sex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo-sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reported Danaus neo-sex chromosome within the tribe Danaini. We assembled and annotated genomes of Tirumala septentrionis (subtribe Danaina), Ideopsis similis (Amaurina), Idea leuconoe (Euploeina) and Lycorea halia (Itunina) and identified their Z-linked scaffolds. We found that the Danaus neo-sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to the Melitaea cinxia chromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 in I. similis and independent fusion occurred between ancestral Z chromosome and McChr12 in L. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex-biased genes in I. leuconoe and L. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female- and male-biased genes, respectively, which could have hypothetically facilitated fixation of the neo-sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo-Z chromosomes of both I. leuconoe and L. halia appear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species.

3.
Front Plant Sci ; 14: 1249292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929170

RESUMEN

Introduction: Despite the wealth of studies dealing with the invasions of alien plants, invasions of alien genotypes of native species (cryptic invasions) have been vastly neglected. The impact of cryptic invasions on the biodiversity of plant communities can, however, be significant. Inland saline habitats and halophytes (i.e., salt-tolerant plant species) are especially threatened by this phenomenon as they inhabit fragmented remnants of largely destroyed habitats, but at the same time some of these halophytic species are rapidly spreading along salt-treated roads. To study potential cryptic invasion of halophytes, the patterns of genome size and ploidy variation in the Puccinellia distans complex (Poaceae), the most rapidly spreading roadside halophyte in Central Europe, were investigated. Methods: DNA flow cytometry with confirmatory chromosome counts were employed to assess ploidy levels of 1414 individuals from 133 populations of the P. distans complex. In addition, climatic niche modelling was used to predict the distributions of selected cytotypes. Results: Eight groups differing in ploidy level and/or genome size were discovered, one diploid (2x; 2n = 14), two tetraploid (4xA, 4xB; 2n = 28), one pentaploid (5x; 2n = 35), three hexaploid (6xA, 6xB, 6xC; 2n = 42), and one heptaploid (7x; 2n = 49). The hexaploids (mostly the 6xC cytotype) were widespread through the study area, spreading intensively in both anthropogenic and natural habitats and probably hybridizing with the natural habitat dwelling tetraploids. In contrast, the non-hexaploid cytotypes rarely spread and were predominantly confined to natural habitats. Discussion: The extensive spread of the hexaploid cytotypes along roadsides has most likely facilitated their incursion into natural habitats. The colonization of new natural habitats by the hexaploids may pose a threat to the indigenous Puccinellia populations by compromising their genetic integrity and/or by outcompeting them.

4.
Cytometry A ; 103(12): 953-966, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37807676

RESUMEN

Flow cytometry (FCM) is now the most widely used method to determine ploidy levels and genome size of plants. To get reliable estimates and allow reproducibility of measurements, the methodology should be standardized and follow the best practices in the field. In this article, we discuss instrument calibration and quality control and various instrument and acquisition settings (parameters, flow rate, number of events, scales, use of discriminators, peak positions). These settings must be decided before measurements because they determine the amount and quality of the data and thus influence all downstream analyses. We describe the two main approaches to raw data analysis (gating and histogram modeling), and we discuss their advantages and disadvantages. Finally, we provide a summary of best practice recommendations for data acquisition and raw data analysis in plant FCM.


Asunto(s)
Ploidias , Citometría de Flujo/métodos , Reproducibilidad de los Resultados , Calibración , Tamaño del Genoma
5.
Commun Biol ; 5(1): 1281, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418465

RESUMEN

Many lepidopteran species produce silk, cocoons, feeding tubes, or nests for protection from predators and parasites for caterpillars and pupae. Yet, the number of lepidopteran species whose silk composition has been studied in detail is very small, because the genes encoding the major structural silk proteins tend to be large and repetitive, making their assembly and sequence analysis difficult. Here we have analyzed the silk of Yponomeuta cagnagella, which represents one of the early diverging lineages of the ditrysian Lepidoptera thus improving the coverage of the order. To obtain a comprehensive list of the Y. cagnagella silk genes, we sequenced and assembled a draft genome using Oxford Nanopore and Illumina technologies. We used a silk-gland transcriptome and a silk proteome to identify major silk components and verified the tissue specificity of expression of individual genes. A detailed annotation of the major genes and their putative products, including their complete sequences and exon-intron structures is provided. The morphology of silk glands and fibers are also shown. This study fills an important gap in our growing understanding of the structure, evolution, and function of silk genes and provides genomic resources for future studies of the chemical ecology of Yponomeuta species.


Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Seda/genética , Pupa , Genómica , Proteoma
6.
Bioinformatics ; 38(10): 2954-2955, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561177

RESUMEN

SUMMARY: The package MorphoTools2 is intended for multivariate analyses of morphological data. Commonly used tools are missing or scattered across several R packages. The new package, in order to make the workflow convenient and fast, wraps available statistical and graphical tools and provides a comprehensive framework for checking and manipulating input data, core statistical analyses and a wide palette of functions designed to visualize results. AVAILABILITY AND IMPLEMENTATION: Stable version is available from CRAN: https://cran.r-project.org/package=MorphoTools2. The development version is available from the following GitHub repository: https://github.com/MarekSlenker/MorphoTools2. The software is distributed under the GNU General Public Licence (v.3). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Análisis Multivariante , Flujo de Trabajo
7.
Cytometry A ; 101(9): 749-781, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34585818

RESUMEN

Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.


Asunto(s)
Plantas , Ploidias , ADN de Plantas/genética , Citometría de Flujo/métodos , Tamaño del Genoma , Genoma de Planta , Plantas/genética
8.
Cytometry A ; 101(9): 710-724, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34405937

RESUMEN

The estimation of nuclear DNA content has been by far the most popular application of flow cytometry in plants. Because flow cytometry measures relative fluorescence intensities of nuclei stained by a DNA fluorochrome, ploidy determination, and estimation of the nuclear DNA content in absolute units both require comparison to a reference standard of known DNA content. This implies that the quality of the results obtained depends on the standard selection and use. Internal standardization, when the nuclei of an unknown sample and the reference standard are isolated, stained, and measured simultaneously, is mandatory for precise measurements. As DNA peaks representing G1 /G0 nuclei of the sample and standard appear on the same histogram of fluorescence intensity, the quotient of their position on the fluorescence intensity axis provides the quotient of DNA amounts. For the estimation of DNA amounts in absolute units, a number of well-established standards are now available to cover the range of known plant genome sizes. Since there are different standards in use, the standard and the genome size assigned to it has always to be reported. When none of the established standards fits, the introduction of a new standard species is needed. For this purpose, the regression line approach or simultaneous analysis of the candidate standard with several established standards should be prioritized. Moreover, the newly selected standard organism has to fulfill a number of requirements: it should be easy to identify and maintain, taxonomically unambiguous, globally available, with known genome size stability, lacking problematic metabolites, suitable for isolation of sufficient amounts of nuclei, and enabling measurements with low coefficients of variation of DNA peaks, hence suitable for the preparation of high quality samples.


Asunto(s)
Genoma de Planta , Ploidias , ADN de Plantas/genética , Citometría de Flujo/métodos , Estándares de Referencia
9.
Cytometry A ; 99(4): 318-327, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33751820

RESUMEN

A critical aspect for obtaining accurate, reliable, and high-resolution estimates of nuclear DNA content is the release of nuclei from the cytoplasm in sufficient amounts, while maintaining their integrity throughout the analysis, protecting their DNA from degradation by endonucleases, and enabling stoichiometric DNA staining. In embryophytes, the most common method consists of chopping the plant material with a sharp razor blade to release nuclei into an isolation buffer, filtering the homogenate, and staining the nuclei in buffered suspension with a fluorochrome of choice. Despite the recent description of alternative approaches to isolate nuclei, the chopping procedure remains the most widely adopted method, due to its simplicity, rapidity, and effectiveness. In this review article, we discuss the specifics of nuclei isolation buffers and the distorting effects that secondary metabolites may have in nuclear suspensions and how to test them. We also present alternatives to the chopping procedure, options for filtering and fluorochromes, and discuss the applications of these varied approaches. A summary of the best practices regarding the isolation of plant nuclei for the estimation of nuclear DNA content is also provided.


Asunto(s)
Núcleo Celular , Ploidias , Núcleo Celular/genética , ADN de Plantas/genética , Citometría de Flujo , Coloración y Etiquetado
11.
Genes (Basel) ; 10(12)2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817557

RESUMEN

Moths and butterflies (Lepidoptera) are the largest group with heterogametic females. Although the ancestral sex chromosome system is probably Z0/ZZ, most lepidopteran species have the W chromosome. When and how the W chromosome arose remains elusive. Existing hypotheses place the W origin either at the common ancestor of Ditrysia and Tischeriidae, or prefer independent origins of W chromosomes in these two groups. Due to their phylogenetic position at the base of Ditrysia, bagworms (Psychidae) play an important role in investigating the W chromosome origin. Therefore, we examined the W chromosome status in three Psychidae species, namely Proutiabetulina, Taleporiatubulosa, and Diplodomalaichartingella, using both classical and molecular cytogenetic methods such as sex chromatin assay, comparative genomic hybridization (CGH), and male vs. female genome size comparison by flow cytometry. In females of all three species, no sex chromatin was found, no female-specific chromosome regions were revealed by CGH, and a Z-chromosome univalent was observed in pachytene oocytes. In addition, the genome size of females was significantly smaller than males. Overall, our study provides strong evidence for the absence of the W chromosome in Psychidae, thus supporting the hypothesis of two independent W chromosome origins in Tischeriidae and in advanced Ditrysia.


Asunto(s)
Cromosomas de Insectos/genética , Genoma de los Insectos , Mariposas Nocturnas/genética , Filogenia , Cromosomas Sexuales/metabolismo , Animales , Cromosomas de Insectos/metabolismo , Femenino , Masculino , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/metabolismo
12.
Sci Rep ; 9(1): 14386, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31591463

RESUMEN

Gametophytic apomixis is a way of asexual plant reproduction by seeds. It should be advantageous under stressful high altitude or latitude environment where short growing seasons, low temperatures, low pollinator activity or unstable weather may hamper sexual reproduction. However, this hypothesis remains largely untested. Here, we assess the reproductive mode in 257 species belonging to 45 families from the world's broadest alpine belt (2800-6150 m) in NW Himalayas using flow cytometric seed screen. We found only 12 apomictic species, including several members of Poaceae (Festuca, Poa and Stipa), Rosaceae (Potentilla) and Ranunculaceae (Halerpestes, Ranunculus), which are families typical for high apomict frequency. However, several apomictic species were newly discovered, including the first known apomictic species from the family Biebersteiniaceae (Biebersteinia odora), and first apomicts from the genera Stipa (Stipa splendens) and Halerpestes (Halerpestes lancifolia). Apomicts showed no preference for higher elevations, even in these extreme Himalayan alpine habitats. Additional trait-based analyses revealed that apomicts differed from sexuals in comprising more rhizomatous graminoids and forbs, higher soil moisture demands, sharing the syndrome of dominant species with broad geographical and elevation ranges typical for the late-successional habitats. Apomicts differ from non-apomicts in greater ability of clonal propagation and preference for wetter, more productive habitats.


Asunto(s)
Apomixis , Ecosistema , Fenómenos Fisiológicos de las Plantas , Filogenia
13.
Am J Bot ; 106(11): 1477-1486, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31634425

RESUMEN

PREMISE: Hybridization is a key process in plant speciation. Despite its importance, there is no detailed study of hybridization rates in fern populations. A proper estimate of hybridization rates is needed to understand factors regulating hybridization. METHODS: We studied hybridization in the European Dryopteris carthusiana group, represented by one diploid and two tetraploid species and their hybrids. We sampled ~100 individuals per population in 40 mixed populations of the D. carthusiana group across Europe. All plants were identified by measuring genome size (DAPI staining) using flow cytometry. To determine the maternal parentage of hybrids, we sequenced the chloroplast region trnL-trnF of all taxa involved. RESULTS: We found hybrids in 85% of populations. Triploid D. ×ambroseae occurred in every population that included both parent species and is most abundant when the parent species are equally abundant. By contrast, tetraploid D. ×deweveri was rare (15 individuals total) and triploid D. ×sarvelae was absent. The parentage of hybrid taxa is asymmetric. Despite expectations from previous studies, tetraploid D. dilatata is the predominant male parent of its triploid hybrid. CONCLUSIONS: This is a thorough investigation of hybridization rates in natural populations of ferns. Hybridization rates differ greatly even among closely related fern taxa. In contrast to angiosperms, our data suggest that hybridization rates are highest in balanced parent populations and support the notion that some ferns possess very weak barriers to hybridization. Our results from sequencing cpDNA challenge established notions about the correlation of ploidy level and mating tendencies.


Asunto(s)
Dryopteris , Europa (Continente) , Tamaño del Genoma , Humanos , Hibridación Genética , Ploidias , Poliploidía
14.
Ann Bot ; 123(5): 845-855, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-30541055

RESUMEN

BACKGROUND AND AIMS: Polyploidy has played an important role in the evolution of ferns. However, the dearth of data on cytotype diversity, cytotype distribution patterns and ecology in ferns is striking in comparison with angiosperms and prevents an assessment of whether cytotype coexistence and its mechanisms show similar patterns in both plant groups. Here, an attempt to fill this gap was made using the ploidy-variable and widely distributed Cystopteris fragilis complex. METHODS: Flow cytometry was used to assess DNA ploidy level and monoploid genome size (Cx value) of 5518 C. fragilis individuals from 449 populations collected over most of the species' global distributional range, supplemented with data from 405 individuals representing other related species from the complex. Ecological preferences of C. fragilis tetraploids and hexaploids were compared using field-recorded parameters and database-extracted climate data. KEY RESULTS: Altogether, five different ploidy levels (2x, 4x, 5x, 6x, 8x) were detected and three species exhibited intraspecific ploidy-level variation: C. fragilis, C. alpina and C. diaphana. Two predominant C. fragilis cytotypes, tetraploids and hexaploids, co-occur over most of Europe in a diffuse, mosaic-like pattern. Within this contact zone, 40 % of populations were mixed-ploidy and most also contained pentaploid hybrids. Environmental conditions had only a limited effect on the distribution of cytotypes. Differences were found in the Cx value of tetraploids and hexaploids: between-cytotype divergence was higher in uniform-ploidy than in mixed-ploidy populations. CONCLUSIONS: High ploidy-level diversity and widespread cytotype coexistence in the C. fragilis complex match the well-documented patterns in some angiosperms. While ploidy coexistence in C. fragilis is not driven by environmental factors, it could be facilitated by the perennial life-form of the species, its reproductive modes and efficient wind dispersal of spores. Independent origins of hexaploids and/or inter-ploidy gene flow may be expected in mixed-ploidy populations according to Cx value comparisons.


Asunto(s)
Helechos , Ecología , Europa (Continente) , Humanos , Hibridación Genética , Ploidias , Poliploidía
15.
Am J Bot ; 105(6): 1009-1020, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29957852

RESUMEN

PREMISE OF THE STUDY: A period of allopatry is widely believed to be essential for the evolution of reproductive isolation. However, strict allopatry may be difficult to achieve in some cosmopolitan, spore-dispersed groups, like mosses. We examined the genetic and genome size diversity in Mediterranean populations of the moss Ceratodon purpureus s.l. to evaluate the role of allopatry and ploidy change in population divergence. METHODS: We sampled populations of the genus Ceratodon from mountainous areas and lowlands of the Mediterranean region, and from Western and Central Europe. We performed phylogenetic and coalescent analyses on sequences from five nuclear introns and a chloroplast locus to reconstruct their evolutionary history. We also estimated genome size using flow cytometry (employing propidium iodide) and determined the sex of samples using a sex-linked PCR marker. KEY RESULTS: Two well-differentiated clades were resolved, discriminating two homogeneous groups: the widespread C. purpureus and a local group mostly restricted to the mountains in Southern Spain. The latter also possessed a genome size 25% larger than the widespread C. purpureus, and the samples of this group consist entirely of females. We also found hybrids, and some of them had a genome size equivalent to the sum of the C. purpureus and Spanish genome, suggesting that they arose by allopolyploidy. CONCLUSIONS: These data suggest that a new species of Ceratodon arose via peripatric speciation, potentially involving a genome size change and a strong female-biased sex ratio. The new species has hybridized in the past with C. purpureus.


Asunto(s)
Bryopsida/genética , Flujo Génico , Especiación Genética , Variación Genética , Ploidias , Tamaño del Genoma , Filogenia , Aislamiento Reproductivo , Razón de Masculinidad
16.
Ann Bot ; 120(2): 303-315, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28398545

RESUMEN

Background and Aims: Despite the recent wealth of studies targeted at contact zones of cytotypes in various species, some aspects of polyploid evolution are still poorly understood. This is especially the case for the frequency and success rate of spontaneous neopolyploidization or the temporal dynamics of ploidy coexistence, requiring massive ploidy screening and repeated observations, respectively. To fill this gap, an extensive study of spatio-temporal patterns of ploidy coexistence was initiated in the widespread annual weed Tripleurospermum inodorum (Asteraceae). Methods: DNA flow cytometry along with confirmatory chromosome counts was employed to assess ploidy levels of 11 018 adult individuals and 1263 ex situ germinated seedlings from 1209 Central European populations. The ploidy screening was conducted across three spatial scales and supplemented with observations of temporal development of 37 mixed-ploidy populations. Key Results: The contact zone between the diploid and tetraploid cytotypes has a diffuse, mosaic-like structure enabling common cytotype coexistence from the within-population to the landscape level. A marked difference in monoploid genome size between the two cytotypes enabled the easy distinction of neotetraploid mutants from long-established tetraploids. Neotetraploids were extremely rare (0·03 %) and occurred solitarily. Altogether five ploidy levels (2 x -6 x ) and several aneuploids were discovered; the diversity in nuclear DNA content was highest in early ontogenetic stages (seedlings) and among individuals from mixed-ploidy populations. In spite of profound temporal oscillations in cytotype frequencies in mixed-ploidy populations, both diploids and tetraploids usually persisted up to the last census. Conclusions: Diploids and tetraploids commonly coexist at all spatial scales and exhibit considerable temporal stability in local ploidy mixtures. Mixed-ploidy populations containing fertile triploid hybrids probaby act as effective generators of cytogenetic novelty and may facilitate inter-ploidy gene flow. Neopolyploid mutants were incapable of local establishment.


Asunto(s)
Asteraceae/genética , Evolución Biológica , Poliploidía , Diploidia , Europa (Continente) , Tetraploidía
17.
Appl Plant Sci ; 4(3)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27011897

RESUMEN

PREMISE OF THE STUDY: Microsatellite primers were developed for the first time in the root hemiparasite herb Odontites vernus (Orobanchaceae). These markers will be useful to investigate the role of polyploidization in the evolution of this diploid-tetraploid complex, as well as the extent of gene flow between different ploidy levels. METHODS AND RESULTS: Fourteen polymorphic and reproducible loci were identified and optimized from O. vernus using a microsatellite-enriched library and 454 Junior sequencing. The set of primers amplified di- to pentanucleotide repeats and showed two to 13 alleles per locus. Transferability was tested in 30 taxa (19 belonging to Odontites and 11 from eight other genera of Orobanchaceae tribe Rhinantheae). CONCLUSIONS: The results indicate the utility of the newly developed microsatellites in O. vernus and several other species, which will be useful for taxon delimitation and conservation genetics studies.

18.
Ann Bot ; 117(1): 97-106, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26476395

RESUMEN

BACKGROUND AND AIMS: In ferns, apomixis is an important mode of asexual reproduction. Although the mechanisms of fern reproduction have been studied thoroughly, most previous work has focused on cases in which ferns reproduce either exclusively sexually or exclusively asexually. Reproduction of ferns with potentially mixed systems and inheritance of apomixis remains largely unknown. This study addresses reproduction of the pentaploid Dryopteris × critica, a hybrid of triploid apomictic D. borreri and tetraploid sexual D. filix-mas. METHODS: Spore size, abortion percentage and number of spores per sporangium were examined in pentaploid plants of D. × critica grown in an experimental garden. The sporangial content of leaf segments was cultivated on an agar medium, and DNA ploidy levels were estimated by DAPI flow cytometry in 259 gametophytes or sporophytes arising from the F2 generation of the pentaploid hybrid. KEY RESULTS: The hybrid is partly fertile (89-94% of aborted spores) and shows unstable sporogenesis with sexual and apomictic reproduction combined. The number of spores per sporangium varied from approx. 31 to 64. Within a single sporangium it was possible to detect formation of either only aborted spores or various mixtures of aborted and well-developed reduced spores and unreduced diplospores. The spores germinated in viable gametophytes with two ploidy levels: pentaploid (5x, from unreduced spores) and half of that (approx. 2·5x, from reduced spores). Moreover, 2-15% of gametophytes (both 2·5x and 5x) formed a viable sporophyte of the same ploidy level due to apogamy. CONCLUSIONS: This study documents the mixed reproductive mode of a hybrid between apomictic and sexual ferns. Both sexual reduced and apomictic unreduced spores can be produced by a single individual, and even within a single sporangium. Both types of spores give rise to viable F2 generation gametophytes and sporophytes.


Asunto(s)
Apomixis , Dryopteris/fisiología , Gametogénesis en la Planta/fisiología , Haploidia , Tetraploidía , Cruzamientos Genéticos , ADN de Plantas/metabolismo , Dryopteris/genética , Citometría de Flujo , Gametogénesis en la Planta/genética , Tamaño del Genoma , Genoma de Planta , Germinación , Esporas/citología , Esporas/fisiología
19.
Genetica ; 139(3): 281-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21336570

RESUMEN

The Russsian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is a worldwide pest of cereals. Despite its economic importance, little is known about its genome. Here we investigated physical genomic features in RWA by karyotype analysis using differential staining with AgNO(3), CMA(3), and DAPI, by chromosomal localization of ribosomal DNA (rDNA), H3 and H4 histone genes, and the "arthropod" telomeric sequence (TTAGG)(n) using fluorescence in situ hybridization (FISH), and by measuring the RWA genome size using flow cytometry. The female karyotype, 2n = 10, is composed of four autosome pairs and a pair of X chromosomes, whereas the male karyotype, 2n = 9, has a single X. The X chromosome is the largest element in the karyotype. All three molecular markers used, i.e., 18S rRNA and both H3 and H4 probes are co-localized at one end of the X chromosome. The FISH probes revealed that the AgNO(3)-positive bridge between two prometaphase X chromosomes of females, which is believed to be responsible for the elimination of one X chromosome in aphid oocytes determined to undergo male development, contains clusters of both histone genes, in addition to an rDNA cluster. Interestingly, RWA lacks the (TTAGG)(n) telomeric sequence in its genome, in contrast to several previously investigated aphid species. Additionally, we compared female and male genome sizes. The female genome size is 2C = 0.86 pg, whereas the male genome size is 2C = 0.70 pg. The difference between the DNA content in the two genders suggests that the RWA X chromosome occupies about 35% of the female haploid genome (1C = 0.43 pg), which makes it one of the largest sex chromosomes in the animal kingdom.


Asunto(s)
Áfidos/genética , Cromosomas de Insectos/genética , Histonas/genética , ARN Ribosómico/genética , Animales , Southern Blotting , Sondas de ADN/genética , Sondas de ADN/metabolismo , ADN Ribosómico/genética , Femenino , Genoma de los Insectos , Hibridación Fluorescente in Situ , Cariotipificación , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...