Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931420

RESUMEN

Nowadays, lipidomics plays a crucial role in the investigation of novel biomarkers of various diseases. Its implementation into the field of clinical analysis led to the identification of specific lipids and/or significant changes in their plasma levels in patients suffering from cancer, Alzheimer's disease, sepsis, and many other diseases and pathological conditions. Profiling of lipids and determination of their plasma concentrations could also be helpful in the case of drug therapy management, especially in combination with therapeutic drug monitoring (TDM). Here, for the first time, a combined approach based on the TDM of colistin, a last-resort antibiotic, and lipidomic profiling is presented in a case study of a critically ill male patient suffering from Pseudomonas aeruginosa-induced pneumonia. Implementation of innovative analytical approaches for TDM (online combination of capillary electrophoresis with tandem mass spectrometry, CZE-MS/MS) and lipidomics (liquid chromatography-tandem mass spectrometry, LC-MS/MS) was demonstrated. The CZE-MS/MS strategy confirmed the chosen colistin drug dosing regimen, leading to stable colistin concentrations in plasma samples. The determined colistin concentrations in plasma samples reached the required minimal inhibitory concentration of 1 µg/mL. The complex lipidomics approach led to monitoring 545 lipids in collected patient plasma samples during and after the therapy. Some changes in specific individual lipids were in good agreement with previous lipidomics studies dealing with sepsis. The presented case study represents a good starting point for identifying particular individual lipids that could correlate with antimicrobial and inflammation therapeutic management.

2.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928485

RESUMEN

Gyrophoric acid (GA), a lichen secondary metabolite, has attracted more attention during the last years because of its potential biological effects. Until now, its effect in vivo has not yet been demonstrated. The aim of our study was to evaluate the basic physicochemical and pharmacokinetic properties of GA, which are directly associated with its biological activities. The stability of the GA in various pH was assessed by conducting repeated UV-VIS spectral measurements. Microsomal stability in rat liver microsomes was performed using Ultra-Performance LC/MS. Binding to human serum albumin (HSA) was assessed using synchronous fluorescence spectra, and molecular docking analysis was used to reveal the binding site of GA to HSA. In the in vivo experiment, 24 Sprague-Dawley rats (Velaz, Únetice, Czech Republic) were used. The animals were divided as follows. The first group (n = 6) included healthy males as control intact rats (♂INT), and the second group (n = 6) included healthy females as controls (♀INT). Groups three and four (♂GA/n = 6 and ♀GA/n = 6) consisted of animals with daily administered GA (10 mg/kg body weight) in an ethanol-water solution per os for a one-month period. We found that GA remained stable under various pH and temperature conditions. It bonded to human serum albumin with the binding constant 1.788 × 106 dm3mol-1 to reach the target tissue via this mechanism. In vivo, GA did not influence body mass gain, food, or fluid intake during the experiment. No liver toxicity was observed. However, GA increased the rearing frequency in behavioral tests (p < 0.01) and center crossings in the elevated plus-maze (p < 0.01 and p < 0.001, respectively). In addition, the time spent in the open arm was prolonged (p < 0.01 and p < 0.001, respectively). Notably, GA was able to pass through the blood-brain barrier, indicating its ability to permeate into the brain and to stimulate neurogenesis in the hilus and subgranular zone of the hippocampus. These observations highlight the potential role of GA in influencing brain function and neurogenesis.


Asunto(s)
Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Femenino , Humanos , Microsomas Hepáticos/metabolismo , Concentración de Iones de Hidrógeno , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/química , Unión Proteica
3.
Biomedicines ; 12(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38790965

RESUMEN

Many biologically active metabolites of the essential amino acid L-tryptophan (Trp) are associated with different neurodegenerative diseases and neurological disorders. Precise and reliable methods for their determination are needed. Variability in their physicochemical properties makes the analytical process challenging. In this case, chemical modification of analyte derivatization could come into play. Here, we introduce a novel fast reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled with tandem mass spectrometry (MS/MS) method for the determination of Trp and its ten metabolites in human plasma samples after derivatization with 2-bromo-4'-nitroacetophenone (BNAP). The derivatization procedure was optimized in terms of incubation time, temperature, concentration, and volume of the derivatization reagent. Method development comprises a choice of a suitable stationary phase, mobile phase composition, and gradient elution optimization. The developed method was validated according to the ICH guidelines. Results of all validation parameters were within the acceptance criteria of the guideline, i.e., intra- and inter-day precision (expressed as relative standard deviation; RSD) were in the range of 0.5-8.2% and 2.3-7.4%, accuracy was in the range of 93.3-109.7% and 94.7-110.1%, limits of detection (LODs) were in the range of 0.15-9.43 ng/mL, coefficients of determination (R2) were higher than 0.9906, and carryovers were, in all cases, less than 8.8%. The practicability of the method was evaluated using the blue applicability grade index (BAGI) with a score of 65. Finally, the developed method was used for the analysis of Alzheimer's disease and healthy control plasma to prove its applicability. Statistical analysis revealed significant changes in picolinic acid (PA), anthranilic acid (AA), 5 hydroxyindole-3-acetic acid (5-OH IAA), and quinolinic acid (QA) concentration levels. This could serve as the basis for future studies that will be conducted with a large cohort of patients.

4.
J Neuroinflammation ; 21(1): 78, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539208

RESUMEN

BACKGROUND: Accumulation of tau leads to neuroinflammation and neuronal cell death in tauopathies, including Alzheimer's disease. As the disease progresses, there is a decline in brain energy metabolism. However, the role of tau protein in regulating lipid metabolism remains less characterized and poorly understood. METHODS: We used a transgenic rat model for tauopathy to reveal metabolic alterations induced by neurofibrillary pathology. Transgenic rats express a tau fragment truncated at the N- and C-terminals. For phenotypic profiling, we performed targeted metabolomic and lipidomic analysis of brain tissue, CSF, and plasma, based on the LC-MS platform. To monitor disease progression, we employed samples from transgenic and control rats aged 4, 6, 8, 10, 12, and 14 months. To study neuron-glia interplay in lipidome changes induced by pathological tau we used well well-established multicomponent cell model system. Univariate and multivariate statistical approaches were used for data evaluation. RESULTS: We showed that tau has an important role in the deregulation of lipid metabolism. In the lipidomic study, pathological tau was associated with higher production of lipids participating in protein fibrillization, membrane reorganization, and inflammation. Interestingly, significant changes have been found in the early stages of tauopathy before the formation of high-molecular-weight tau aggregates and neurofibrillary pathology. Increased secretion of pathological tau protein in vivo and in vitro induced upregulated production of phospholipids and sphingolipids and accumulation of lipid droplets in microglia. We also found that this process depended on the amount of extracellular tau. During the later stages of tauopathy, we found a connection between the transition of tau into an insoluble fraction and changes in brain metabolism. CONCLUSION: Our results revealed that lipid metabolism is significantly affected during different stages of tau pathology. Thus, our results demonstrate that the dysregulation of lipid composition by pathological tau disrupts the microenvironment, further contributing to the propagation of pathology.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratas , Animales , Ratones , Proteínas tau/genética , Proteínas tau/metabolismo , Ovillos Neurofibrilares/metabolismo , Metabolismo de los Lípidos , Tauopatías/patología , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Ratas Transgénicas , Ratones Transgénicos , Modelos Animales de Enfermedad
5.
Anal Chim Acta ; 1300: 342435, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38521569

RESUMEN

Carboxylic acids (CAs) represent a large group of important molecules participating in various biologically significant processes. Analytical study of these compounds is typically performed by liquid chromatography (LC) combined with various types of detection. However, their analysis is often accompanied by a wide variety of problems depending on used separation system or detection method. The dominant ones are: i) poor chromatographic behavior of the CAs in reversed-phase LC; ii) absence of a chromophore (or fluorophore); iii) weak ionization in mass spectrometry (MS). To overcome these problems, targeted chemical modification, and derivatization, come into play. Therefore, derivatization still plays an important and, in many cases, irreplaceable role in sample preparation, and new derivatization methods of CAs are constantly being developed. The most commonly used type of reaction for CAs derivatization is amidation. In recent years, an increased interest in the isotopic labeling derivatization method has been observed. In this review, we comprehensively summarize the possibilities and actual trends in the derivatization of CAs that have been published over the past decade.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38422619

RESUMEN

Targeting the transient receptor potential vanilloid 2 channels (TRPV2) in order to alleviate or reverse the course of several diseases including multiple cancers, cardiovascular, immunological, or neurological disorders have been a matter of focus for several years now. SET2, a selective TRPV2 inhibitor, represents an innovative molecule which came into recognition in 2019 and seems to be a promising therapeutic modality in cancer and cardiac diseases. Drug discovery and bioanalysis in clinical environment demands simple, excellent, highly reliable, fast, sensitive, and selective analytical approaches which enable unambiguous identification and quantification of demanded molecule. Here, a targeted ultra-high-performance liquid chromatography - tandem mass spectrometry with electrospray ionization was developed for the quantification of SET2 in plasma samples. The developed method enabled analysis of approx. 15 samples within one hour. Simplicity of the whole analytical procedure can be emphasized by a very simple sample pretreatment based only on the protein precipitation with organic acid (here, 2 M tricholoroacetic acid). The validation procedure was characterized by promising validation parameters and excellent sensitivity what was documented by the limit of detection value at pg.mL-1 concentration level. Analytical validation reported intra- and interday accuracy < 15 % for all quality control samples concentration levels. Similarly, excellent level of intra- (0.1 - 4.8 %) and interday (0.5 - 3.3 %) precision for the tested quality control samples was obtained. The applicability of the developed method was proven by quantifying SET2 concentration levels in plasma samples obtained from Wistar rats that were administered this drug intraperitoneally at a dose of 25 mg/kg. We expect that our new analytical method represents a very attractive tool that could be easily implemented in pharmacokinetics studies and/or therapeutic drug monitoring. Moreover, its applicability was confirmed by the new practicability evaluation metric tool.


Asunto(s)
Descubrimiento de Drogas , Espectrometría de Masas en Tándem , Ratas , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Ratas Wistar , Calibración , Reproducibilidad de los Resultados
7.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396926

RESUMEN

Lipids represent a large group of biomolecules that are responsible for various functions in organisms. Diseases such as diabetes, chronic inflammation, neurological disorders, or neurodegenerative and cardiovascular diseases can be caused by lipid imbalance. Due to the different stereochemical properties and composition of fatty acyl groups of molecules in most lipid classes, quantification of lipids and development of lipidomic analytical techniques are problematic. Identification of different lipid species from complex matrices is difficult, and therefore individual analytical steps, which include extraction, separation, and detection of lipids, must be chosen properly. This review critically documents recent strategies for lipid analysis from sample pretreatment to instrumental analysis and data interpretation published in the last five years (2019 to 2023). The advantages and disadvantages of various extraction methods are covered. The instrumental analysis step comprises methods for lipid identification and quantification. Mass spectrometry (MS) is the most used technique in lipid analysis, which can be performed by direct infusion MS approach or in combination with suitable separation techniques such as liquid chromatography or gas chromatography. Special attention is also given to the correct evaluation and interpretation of the data obtained from the lipid analyses. Only accurate, precise, robust and reliable analytical strategies are able to bring complex and useful lipidomic information, which may contribute to clarification of some diseases at the molecular level, and may be used as putative biomarkers and/or therapeutic targets.


Asunto(s)
Lipidómica , Lípidos , Lípidos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida
8.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255922

RESUMEN

We aimed to determine effects of aliskiren, a direct renin inhibitor, loaded onto polymeric nanoparticles on the (pro)renin receptor (Atp6ap2), angiotensin II type 1 receptor (Agtr1), and angiotensin-converting enzyme (ACE) gene expression in the heart of spontaneously hypertensive rats (SHR). Twelve-week-old male SHRs were divided into an untreated group and groups treated with powdered aliskiren or aliskiren-loaded nanoparticles (25 mg/kg/day). After three weeks, the accumulation of aliskiren, distribution of polymeric nanoparticles, gene expression of Atp6ap2 and Agtr1 receptors and ACE, and protein expression of NADPH oxidase along with the conjugated diene (CD) concentration were analyzed. The accumulation of aliskiren in the heart was higher in the aliskiren-loaded nanoparticle group than in the powdered group. The fluorescent signals of nanoparticles were visible in cardiomyocytes, vessel walls, and erythrocytes. Aliskiren-loaded nanoparticles decreased the gene expression of Atp6ap2 and ACE, while not affecting Agtr1. Both forms of aliskiren decreased the protein expression of NADPH oxidase, with a more pronounced effect observed in the aliskiren-loaded nanoparticle group. CD concentration was decreased only in the aliskiren-loaded nanoparticle group. We hypothesize that aliskiren-loaded nanoparticle-mediated downregulation of Atp6ap2 and ACE may contribute to a decrease in ROS generation with beneficial effects in the heart. Moreover, polymeric nanoparticles may represent a promising tool for targeted delivery of aliskiren.


Asunto(s)
Amidas , Fumaratos , Nanopartículas , Receptor de Prorenina , Masculino , Animales , Ratas , Ratas Endogámicas SHR , NADPH Oxidasas/genética , Miocitos Cardíacos , Polienos , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA