Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2307793, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243890

RESUMEN

When the ancestors of men moved from aquatic habitats to the drylands, their evolutionary strategy to restrict water loss is to seal the skin surface with lipids. It is unknown how these rigid ceramide-dominated lipids with densely packed chains squeeze through narrow extracellular spaces and how they assemble into their complex multilamellar architecture. Here it is shown that the human corneocyte lipid envelope, a monolayer of ultralong covalently bound lipids on the cell surface protein, templates the functional barrier assembly by partly fluidizing and rearranging the free extracellular lipids in its vicinity during the sculpting of a functional skin lipid barrier. The lipid envelope also maintains the fluidity of the extracellular lipids during mechanical stress. This local lipid fluidization does not compromise the permeability barrier. The results provide new testable hypotheses about epidermal homeostasis and the pathophysiology underlying diseases with impaired lipid binding to corneocytes, such as congenital ichthyosis. In a broader sense, this lipoprotein-mediated fluidization of rigid (sphingo)lipid patches may also be relevant to lipid rafts and cellular signaling events and inspire new functional materials.

2.
Mol Pharm ; 20(12): 6237-6245, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37950377

RESUMEN

Oleic acid and oleyl alcohol are commonly used permeation and penetration enhancers to facilitate topical drug delivery. Here, we aimed to better understand the mechanism of their enhancing effects in terms of their interactions with the human skin barrier using diclofenac diethylamine (DIC-DEA), a nonsteroidal anti-inflammatory drug for topical pain management. Oleic acid promoted DIC-DEA permeation through ex vivo human skin more rapidly than oleyl alcohol (both applied at 0.75%) due to fluidization of stratum corneum lipids as revealed by infrared spectroscopy. After 12 h, the effect of these enhancers on DIC-DEA permeation leveled off, fluidization was no longer evident, and skin permeabilization was mainly due to the formation of fluid enhancer-rich domains. Contrary to oleyl alcohol, oleic acid adversely affected two indicators of the skin barrier integrity, transepidermal water loss and skin electrical impedance. The content of oleyl alcohol in the stratum corneum was lower than that of oleic acid (even 12 h after the enhancers were removed from the skin surface), but it caused higher DIC-DEA retention in both epidermis and dermis compared to oleic acid. The effects of oleyl alcohol and oleic acid on DIC-DEA permeation and retention in the skin were similar after a single and repeated application (4 doses every 12 h). Thus, oleyl alcohol offers several advantages over oleic acid for topical drug delivery.


Asunto(s)
Ácido Oléico , Absorción Cutánea , Humanos , Ácido Oléico/farmacología , Ácido Oléico/metabolismo , Piel/metabolismo , Alcoholes Grasos/metabolismo , Alcoholes Grasos/farmacología , Administración Cutánea
3.
Carbohydr Polym ; 321: 121283, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739524

RESUMEN

In this work, amphiphilic hyaluronan was synthesized by grafting succinylated N-oleoyl-phytosphingosine via esters bonds. Succinylated N-oleoyl-phytosphingosine (sCER) was first prepared by esterification of hydroxyl moieties of the ceramide with succinic anhydride. The esterification of hyaluronan was governed by crowding effect. The oligomeric HA-sCER derivatives exhibited a strong self-aggregation as evidenced by a very low critical aggregation concentration (1.9 µg mL-1), higher pyrene binding constant (KB), and the smallest particle size (30 nm) in solution. The self-aggregation properties demonstrated to be a function of the substitution degree and molecular weight of HA. The prepared derivatives were non-cytotoxic towards cell lines NIH-3T3. Nanoparticles prepared using oligomeric HA-sCER derivatives improved the penetration of Nile red dye through the stratum corneum due to their smaller size (≤50 nm). The fluorescence intensity localized at the stratum corneum was higher for oligomeric HA-sCER. A significant inhibition of the pro-inflammatory cytokine interleukin-6 production was observed in vitro in macrophages differentiated from THP-1 cells. These findings showed that HA-sCER constituted a promising active ingredient for cosmetics use.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ácido Hialurónico , Esterificación , Ceramidas
4.
J Invest Dermatol ; 143(12): 2427-2435.e3, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37394058

RESUMEN

The lipids in the mammalian stratum corneum (SC) adopt an unusually rigid arrangement to form a vital barrier preventing water loss and harmful environmental impacts. Just above the physiological temperature, a subset of barrier lipids undergoes a phase transition from a very tight orthorhombic to a looser hexagonal arrangement and vice versa. The purpose of this lipid transition in skin physiology is unknown. Permeability experiments on isolated human SC indicated that the transition affects the activation energy for a model compound that prefers lateral movement along lipid layers but not for water or a large polymer that would cross the SC through the pore pathway. The orthorhombic phase content of SC lipids, as determined by infrared spectroscopy, was also modulated by (de)hydration. Spontaneous rearrangement of human SC lipid monolayers into 10 nm higher multilamellar islets at 32-37 °C but not at room temperature was revealed by atomic force microscopy. Our findings add to our knowledge of fundamental skin physiology suggesting a fine temperature- and hydration-controlled switch from fluid lipids (required for lipid barrier assembly) to rigid and tightly packed lipids in the mature SC (necessary for the water and permeability barriers).


Asunto(s)
Frío , Epidermis , Humanos , Animales , Temperatura , Agua , Lípidos , Mamíferos
5.
ACS Omega ; 8(1): 422-435, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643519

RESUMEN

Ceramides belong to sphingolipids, an important group of cellular and extracellular lipids. Their physiological functions range from cell signaling to participation in the formation of barriers against water evaporation. In the skin, they are essential for the permeability barrier, together with free fatty acids and cholesterol. We examined the periodical structure and permeability of lipid films composed of ceramides (Cer; namely, N-lignoceroyl 6-hydroxysphingosine, CerNH24, and N-lignoceroyl sphingosine, CerNS24), lignoceric acid (LIG; 24:0), and cholesterol (Chol). X-ray diffraction experiments showed that the CerNH24-based samples form either a short lamellar phase (SLP, d ∼ 5.4 nm) or a medium lamellar phase (MLP, d = 10.63-10.78 nm) depending on the annealing conditions. The proposed molecular arrangement of the MLP based on extended Cer molecules also agreed with the relative neutron scattering length density profiles obtained from the neutron diffraction data. The presence of MLP increased the lipid film permeability to the lipophilic model permeant (indomethacin) relative to the CerNS24-based control samples and the samples that had the same lipid composition but formed an SLP. Thus, the arrangement of lipids in various nanostructures is responsive to external conditions during sample preparation. This polymorphic behavior directly affects the barrier properties, which could also be (patho)physiologically relevant.

6.
Polymers (Basel) ; 14(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36432961

RESUMEN

Hyaluronan (HA) plays a fundamental role in maintaining the homeostasis on skin health. Furthermore, the effect of HA in skin inflammatory diseases is worth studying in the next future. HA and its conjugates change the solubility of active pharmaceutical ingredients, improve emulsion properties, prolong stability, reduce immunogenicity, and provide targeting. HA penetrates to deeper layers of the skin via several mechanisms, which depend on the macromolecular structure and composition of the formulation. The cellular and molecular mechanisms involved in epidermal dysfunction and skin aging are not well understood. Nevertheless, HA is known to selectively activate CD44-mediated keratinocyte signaling that regulates its proliferation, migration, and differentiation. The molecular size of HA is critical for molecular mechanisms and interactions with receptors. High molecular weight HA is used in emulsions and low molecular weight is used to form nanostructured lipid carriers, polymeric micelles, bioconjugates, and nanoparticles. In the fabrication of microneedles, HA is combined with other polymers to enhance mechanical properties for piercing the skin. Hence, this review aims to provide an overview of the current state of the art and last reported ways of processing, and applications in skin drug delivery, which will advocate for their broadened use in the future.

7.
J Lipid Res ; 63(3): 100177, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35143845

RESUMEN

Desulfation of cholesterol sulfate (CholS) to cholesterol (Chol) is an important event in epidermal homeostasis and necessary for stratum corneum (SC) barrier function. The CholS/Chol ratio decreases during SC maturation but remains high in pathological conditions, such as X-linked ichthyosis, characterized by dry and scaly skin. The aim of this study was to characterize the influence of the CholS/Chol molar ratio on the structure, dynamics, and permeability of SC lipid model mixtures. We synthesized deuterated CholS and investigated lipid models with specifically deuterated components using 2H solid-state NMR spectroscopy at temperatures from 25°C to 80°C. Although the rigid acyl chains in ceramides and fatty acids remained essentially rigid upon variation of the CholS/Chol ratio, both sterols were increasingly fluidized in lipid models containing higher CholS concentrations. We also show the X-ray repeat distance of the lipid lamellar phase (105 Å) and the orthorhombic chain packing of the ceramide's acyl chains and long free fatty acids did not change upon the variation of the CholS content. However, the Chol phase separation visible in models with high Chol concentration disappeared at the 50:50 CholS/Chol ratio. This increased fluidity resulted in higher permeabilities to model markers of these SC models. These results reveal that a high CholS/Chol ratio fluidizes the sterol fraction and increases the permeability of the SC lipid phase while maintaining the lamellar lipid arrangement with an asymmetric sterol distribution.


Asunto(s)
Ésteres del Colesterol , Esteroles , Ceramidas/química , Colesterol/química , Epidermis/química , Permeabilidad , Piel/química
8.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299088

RESUMEN

Ceramides (Cers) with α-hydroxylated acyl chains comprise about a third of all extractable skin Cers and are required for permeability barrier homeostasis. We have probed here the effects of Cer hydroxylation on their behavior in lipid models comprising the major SC lipids, Cer/free fatty acids (C 16-C 24)/cholesterol, and a minor component, cholesteryl sulfate. Namely, Cers with (R)-α-hydroxy lignoceroyl chains attached to sphingosine (Cer AS), dihydrosphingosine (Cer AdS), and phytosphingosine (Cer AP) were compared to their unnatural (S)-diastereomers and to Cers with non-hydroxylated lignoceroyl chains attached to sphingosine (Cer NS), dihydrosphingosine (Cer NdS), and phytosphingosine (Cer NP). By comparing several biophysical parameters (lamellar organization by X-ray diffraction, chain order, lateral packing, phase transitions, and lipid mixing by infrared spectroscopy using deuterated lipids) and the permeabilities of these models (water loss and two permeability markers), we conclude that there is no general or common consequence of Cer α-hydroxylation. Instead, we found a rich mix of effects, highly dependent on the sphingoid base chain, configuration at the α-carbon, and permeability marker used. We found that the model membranes with unnatural Cer (S)-AS have fewer orthorhombically packed lipid chains than those based on the (R)-diastereomer. In addition, physiological (R)-configuration decreases the permeability of membranes, with Cer (R)-AdS to theophylline, and increases the lipid chain order in model systems with natural Cer (R)-AP. Thus, each Cer subclass makes a distinct contribution to the structural organization and function of the skin lipid barrier.


Asunto(s)
Ceramidas/química , Transición de Fase , Piel/química , Piel/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química , Acilación , Humanos , Hidroxilación , Permeabilidad
9.
Eur J Pharm Sci ; 163: 105855, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33872699

RESUMEN

As proven in clinical trials, superficial fungal infections can be effectively treated by single topical application of terbinafine hydrochloride (Ter-HCl) in a film forming system (FFS). Poly(lactic-co-glycolic acid) (PLGA) derivatives, originally synthesized with intention to get carriers with optimized properties for drug delivery, and multifunctional plasticizers - ethyl pyruvate, methyl salicylate, or triacetin - were used for formulation of Ter-HCl loaded FFSs. After spraying, a biodegradable, transparent, adhesive, and occlusive thin layer is formed on the skin, representing drug depot. In situ formed films were characterized by thermal, structural, viscoelastic, and antifungal properties as well as drug release and skin penetration. DSC and SEM showed fully amorphous films with Ter-HCl dissolved in PLGA in high concentration (up to 15%). FFSs are viscoelastic fluids with viscosity which can be easily adjusted by the type of plasticizer used and its concentration. The formulations showed excellent bioadhesion properties, thus ensuring persistence on the skin. In situ film based on branched PLGA/A plasticized with 10% of ethyl pyruvate allowed prolonged release of Ter-HCl by linear kinetics for the first 6 days with a total time of almost 14 days. During ex vivo human skin penetration experiment, Ter-HCl was found to be located only in its target layer, the epidermis. According to our results, plasticized branched PLGA derivatives loaded by Ter-HCl are suitable for the development of FFSs for superficial fungal infections treatment.


Asunto(s)
Portadores de Fármacos , Micosis , Antifúngicos , Liberación de Fármacos , Humanos , Terbinafina
10.
J Pharm Sci ; 110(6): 2517-2523, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33508308

RESUMEN

Topical pain relief products differ in the type of drug, concentration, and formulation. All these factors influence the drug transit through the skin barrier, and its eventual retention in the skin as a reservoir for subsequent release. In addition, the drug potency can be different, which is important for the product efficacy. We studied here ex vivo human skin permeation and retention of five over-the-counter NSAID gels containing 2.32% diclofenac (DIC) and 5-10% etofenamate (ETF). The potency of the permeated/retained drug amounts were compared using a composite parameter, the Index of Relative Topical Anti-inflammatory Activity (IRTAA), which is calculated as the product of the skin permeation/retention and the drug relative potency. The IRTAAs of the DIC gel were 94-667-fold higher and 72-208-fold higher for transdermal delivery and skin retention, respectively, than IRTAAs of the ETF gels. These superior IRTAAs indicate that DIC delivered by this topical formulation would achieve a higher bioactivity and would form a potent drug reservoir relevant for its subsequent long-lasting release.


Asunto(s)
Diclofenaco , Ácido Flufenámico , Administración Cutánea , Antiinflamatorios no Esteroideos , Ácido Flufenámico/análogos & derivados , Geles , Humanos , Dolor , Permeabilidad , Absorción Cutánea
11.
Angew Chem Int Ed Engl ; 59(40): 17383-17387, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32515145

RESUMEN

The lipid phase of the uppermost human skin layer is thought to comprise highly rigid lipids in an orthorhombic phase state to protect the body against the environment. By synthesizing sphingosine-d28 deuterated N-lignoceroyl-d-erythro-sphingosine (ceramide [NS]), we compare the structure and dynamics of both chains of that lipid in biologically relevant mixtures using X-ray diffraction, 2 H NMR analysis, and infrared spectroscopy. Our results reveal a substantial fraction of sphingosine chains in a fluid and dynamic phase state at physiological temperature. These findings prompt revision of our current understanding of the skin lipid barrier, where an extended ceramide [NS] conformation is preferred and a possible domain structure is proposed. Mobile lipid chains may be crucial for skin elasticity and the translocation of physiologically important molecules.


Asunto(s)
Ceramidas/química , Piel/química , Esfingosina/química , Colesterol/química , Deuterio/química , Humanos , Espectroscopía de Resonancia Magnética , Nanoestructuras/química , Piel/metabolismo , Espectrofotometría Infrarroja , Temperatura
12.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118722, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32302667

RESUMEN

Dermal fibroblasts seem critical for epidermal maturation and differentiation and recent work demonstrated that diseased fibroblasts may drive pathophysiological processes. Nevertheless, still very little is known about the actual crosstalk between epidermal keratinocytes and dermal fibroblasts and the impact of dermal fibroblasts on epidermal maturation and differentiation. Aiming for a more fundamental understanding of the impact of the cellular crosstalk between keratinocytes and fibroblasts on the skin homeostasis, we generated full-thickness skin equivalents with and without fibroblasts and subsequently analysed them for the expression of skin differentiation markers, their barrier function, skin lipid content and epidermal cell signalling. Skin equivalents without fibroblasts consistently showed an impaired differentiation and dysregulated expression of skin barrier and tight junction proteins, increased skin permeability, and a decreased skin lipid/protein ratio. Most interestingly, impaired Ras/Raf/ERK/MEK signalling was evident in skin equivalents without fibroblasts. Our data clearly indicate that the epidermal-dermal crosstalk between keratinocytes and fibroblasts is critical for adequate skin differentiation and that fibroblasts orchestrate epidermal differentiation processes.


Asunto(s)
Células Epidérmicas/metabolismo , Fibroblastos/metabolismo , Homeostasis/fisiología , Queratinocitos/metabolismo , Piel/metabolismo , Diferenciación Celular , Células Epidérmicas/patología , Epidermis/metabolismo , Homeostasis/genética , Humanos , Queratinocitos/patología , Permeabilidad , Piel/patología , Absorción Cutánea
13.
Sci Rep ; 10(1): 3832, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123227

RESUMEN

Ceramides (Cer) are essential components of the skin permeability barrier. To probe the role of Cer polar head groups involved in the interfacial hydrogen bonding, the N-lignoceroyl sphingosine polar head was modified by removing the hydroxyls in C-1 (1-deoxy-Cer) or C-3 positions (3-deoxy-Cer) and by N-methylation of amide group (N-Me-Cer). Multilamellar skin lipid models were prepared as equimolar mixtures of Cer, lignoceric acid and cholesterol, with 5 wt% cholesteryl sulfate. In the 1-deoxy-Cer-based models, the lipid species were separated into highly ordered domains (as found by X-ray diffraction and infrared spectroscopy) resulting in similar water loss but 4-5-fold higher permeability to model substances compared to control with natural Cer. In contrast, 3-deoxy-Cer did not change lipid chain order but promoted the formation of a well-organized structure with a 10.8 nm repeat period. Yet both lipid models comprising deoxy-Cer had similar permeabilities to all markers. N-Methylation of Cer decreased lipid chain order, led to phase separation, and improved cholesterol miscibility in the lipid membranes, resulting in 3-fold increased water loss and 10-fold increased permeability to model compounds compared to control. Thus, the C-1 and C-3 hydroxyls and amide group, which are common to all Cer subclasses, considerably affect lipid miscibility and chain order, formation of periodical nanostructures, and permeability of the skin barrier lipid models.


Asunto(s)
Ceramidas/química , Ceramidas/metabolismo , Membranas Artificiales , Piel/metabolismo , Membrana Celular/metabolismo , Permeabilidad , Transición de Fase , Agua/metabolismo
14.
Expert Opin Drug Deliv ; 17(2): 145-155, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31910342

RESUMEN

Introduction: Transdermal drug delivery has several clinical benefits over conventional routes of drug administration. To open the transdermal route for a wider range of drugs, including macromolecules, numerous physical and chemical techniques to overcome the natural low skin permeability have been developed.Areas covered: This review focuses on permeation enhancers (penetration enhancers, percutaneous absorption promoters or accelerants), which are chemicals that increase drug flux through the skin barrier. First, skin components, drug permeation pathways, and drug properties are introduced. Next, we discuss properties of enhancers, their various classifications, structure-activity relationships, mechanisms of action, reversibility and toxicity, biodegradable enhancers, and synergistic enhancer combinations.Expert opinion: Overcoming the remarkable skin barrier properties in an efficient, temporary and safe manner remains a challenge. High permeation-enhancing potency has long been perceived to be associated with toxicity and irritation potential of such compounds, which has limited their further development. In addition, the complexity of enhancer interactions with skin, formulation and drug, along with their vast chemical diversity hampered understanding of their mechanisms of action. The recent development in the field revealed highly potent yet safe enhancers or enhancer combinations, which suggest that enhancer-aided transdermal drug delivery has yet to reach its full potential.


Asunto(s)
Absorción Cutánea , Piel/metabolismo , Administración Cutánea , Animales , Sistemas de Liberación de Medicamentos , Humanos , Permeabilidad , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismo
15.
J Magn Reson ; 310: 106637, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31765968

RESUMEN

Electron paramagnetic resonance (EPR) spectroscopy represents an established tool to study properties of microenvironments, e.g. to investigate the structure and dynamics of biological and artificial membranes. In this study, the partitioning of the spin probe 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) in ex vivo human abdominal and breast skin, ex vivo porcine abdominal and ear skin as well as normal and inflammatory in vitro skin equivalents was investigated by EPR spectroscopy. Furthermore, the stratum corneum (SC) lipid composition (as determined by high-performance thin-layer chromatography), SC lipid chain order (probed by infrared spectroscopy) and the SC thickness (investigated by histology) were determined in the skin models. X-band EPR measurements have shown that TEMPO partitions in the lipophilic and hydrophilic microenvironment in varying ratios in different ex vivo and in vitro skin models. Ex vivo human abdominal skin exhibited the highest amount of TEMPO in the lipophilic microenvironment. In contrast, the lowest amount of TEMPO in the lipophilic microenvironment was determined in ex vivo human breast skin and the inflammatory in vitro skin equivalents. Individual EPR spectra of epidermis including SC and dermis indicated that the lipophilic microenvironment of TEMPO mainly corresponds to the most lipophilic part of the epidermis, the SC. The amount of TEMPO in the lipophilic microenvironment was independent of the SC lipid composition and the SC lipid chain order but correlated with the SC thickness. In conclusion, EPR spectroscopy could be a novel technique to determine differences in the SC thickness, thus suitably complementing existing methods.


Asunto(s)
Óxidos N-Cíclicos/química , Piel/química , Abdomen , Adulto , Anciano , Animales , Mama , Microambiente Celular , Cromatografía en Capa Delgada , Oído Externo , Espectroscopía de Resonancia por Spin del Electrón , Epidermis/química , Femenino , Humanos , Lípidos/química , Masculino , Persona de Mediana Edad , Piel/citología , Grosor de los Pliegues Cutáneos , Espectrofotometría Infrarroja , Marcadores de Spin , Porcinos , Adulto Joven
16.
J Lipid Res ; 61(2): 219-228, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31857390

RESUMEN

Ceramides (Cers) with ultralong (∼32-carbon) chains and ω-esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ∼10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content-namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.


Asunto(s)
Ceramidas/análisis , Lípidos de la Membrana/química , Enfermedades de la Piel/metabolismo , Piel/química , Ceramidas/metabolismo , Humanos , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Estructura Molecular , Piel/metabolismo
17.
Sci Rep ; 9(1): 2913, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814627

RESUMEN

Preclinical studies frequently lack predictive value for human conditions. Human cell-based disease models that reflect patient heterogeneity may reduce the high failure rates of preclinical research. Herein, we investigated the impact of primary cell age and body region on skin homeostasis, epidermal differentiation, and drug uptake. Fibroblasts derived from the breast skin of female 20- to 30-year-olds or 60- to 70-year-olds and fibroblasts from juvenile foreskin (<10 years old) were compared in cell monolayers and in reconstructed human skin (RHS). RHS containing aged fibroblasts differed from its juvenile and adult counterparts, especially in terms of the dermal extracellular matrix composition and interleukin-6 levels. The site from which the fibroblasts were derived appeared to alter fibroblast-keratinocyte crosstalk by affecting, among other things, the levels of granulocyte-macrophage colony-stimulating factor. Consequently, the epidermal expression of filaggrin and e-cadherin was increased in RHS containing breast skin fibroblasts, as were lipid levels in the stratum corneum. In conclusion, the region of the body from which fibroblasts are derived appears to affect the epidermal differentiation of RHS, while the age of the fibroblast donors determines the expression of proteins involved in wound healing. Emulating patient heterogeneity in preclinical studies might improve the treatment of age-related skin conditions.


Asunto(s)
Mama/citología , Senescencia Celular/fisiología , Células Epidérmicas/metabolismo , Fibroblastos/metabolismo , Prepucio/citología , Piel/anatomía & histología , Adulto , Anciano , Mama/anatomía & histología , Diferenciación Celular , Células Cultivadas , Células Epidérmicas/citología , Femenino , Fibroblastos/patología , Proteínas Filagrina , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Piel/citología , Cicatrización de Heridas , Adulto Joven
18.
J Lipid Res ; 60(5): 963-971, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30885924

RESUMEN

Membrane models of the stratum corneum (SC) lipid barrier, either healthy or affected by recessive X-linked ichthyosis, constructed from ceramide [Cer; nonhydroxyacyl sphingosine N-tetracosanoyl-d-erythro-sphingosine (CerNS24) alone or with omega-O-acylceramide N-(32-linoleyloxy)dotriacontanoyl-d-erythro-sphingosine (CerEOS)], FFAs(C16-24), cholesterol (Chol), and sodium cholesteryl sulfate (CholS) were investigated. X-ray diffraction (XRD) revealed a previously unreported polymorphism of the membranes. In the absence of CerEOS, the membranes formed a short lamellar phase (SLP; the repeat distance d = 5.3 nm), a medium lamellar phase (MLP; d = 10.6 nm), or very long lamellar phases (VLLP; d = 15.9 and 21.2 nm). An increased CholS-to-Chol ratio modulated the membrane polymorphism, although the CholS phase separated at ≥ 7 weight% (of total lipids). The presence of CerEOS led to the stable long lamellar phase (LLP) with d = 12.2 nm and prevented VLLP formation. Our XRD results agree well with recently published cryo-electron microscopy data for vitreous skin sections, while also revealing new structures. Thus, lamellar phases with long repeat distances (MLP and VLLP) may be formed in the absence of omega-O-acylceramide, whereas these ultralong Cer species likely stabilize the final SC lipid architecture of LLP by riveting the adjacent lipid layers.


Asunto(s)
Ictiosis Ligada al Cromosoma X/metabolismo , Lípidos de la Membrana/metabolismo , Modelos Biológicos , Piel/química , Microscopía por Crioelectrón , Humanos , Ictiosis Ligada al Cromosoma X/genética , Ictiosis Ligada al Cromosoma X/patología , Lípidos de la Membrana/química , Piel/metabolismo , Piel/patología
19.
Mol Pharm ; 16(2): 886-897, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30629452

RESUMEN

Skin penetration/permeation enhancers facilitate drug delivery through the skin barrier. However, the specific mechanisms that govern the enhancer interactions with the skin, drug, and donor solvent are not fully understood. We designed and synthesized fluorescent-labeled enhancers by attaching 7-nitrobenzo[c][1,2,5]oxadiazol-4-yl (NBD) groups to 6-aminohexanoic acid esters. These NBD esters (applied at a 1% concentration) enhanced the permeation of the model drugs theophylline and hydrocortisone through human skin in vitro up to 6.6- and 3.9-times, respectively. The enhancement effects were strongly affected by the ester chain length (C8-C12) and the polarity of the donor solvent. Using high-performance liquid chromatography with fluorescence detection, no NBD esters were detected in the acceptor buffer, but their hydrolysis product, NBD acid, was detected, whereas both acid and esters were found in the skin. The enhancer hydrolysis occurred in the lower stratum corneum and epidermis; more hydrophilic NBD acid, which is an inactive enhancer, penetrated deeper. This illustrates the principle of biodegradable enhancers. The enhancer concentrations in the skin depended not only on the enhancer chain length and the donor solvent, but also on the drug used. Thus, the drug, when coapplied with the enhancer, modulates the enhancer penetration into the skin and, consequently, its effect. Finally, active (NBD-C8 ester) and inactive (NBD acid) enhancers were visualized in human skin by confocal laser scanning microscopy. Both compounds were found mostly in the stratum corneum intercellular spaces, suggesting that although both are located within the skin barrier lipids, only the active ester is able to effectively interact with the lipids, which was proved by infrared spectroscopy of enhancer-treated stratum corneum. This proof-of-concept study illustrates the use of fluorescent enhancers to obtain insight into the skin penetration/permeation process; interactions among the enhancer, drug, solvent, and skin; and enhancer metabolism.


Asunto(s)
Piel/metabolismo , Solventes/química , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Persona de Mediana Edad , Absorción Cutánea/fisiología
20.
J Colloid Interface Sci ; 535: 227-238, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30300812

RESUMEN

Cholesterol (Chol) is one of the major skin barrier lipids. The physiological level of Chol in the stratum corneum (SC) appears to exceed its miscibility with other barrier lipids, as some Chol is phase separated. Chol synthesis is essential for epidermal homeostasis, yet the role of these Chol domains in SC permeability is unknown. We investigated the impact of Chol depletion on the permeability properties and microstructure of model membranes and human SC. X-ray powder diffraction of membranes constructed from isolated human skin ceramides or synthetic ceramides confirmed that only approximately half of the normal Chol amount can be incorporated in either long or short periodicity lamellar phases. The long periodicity lipid arrangement persisted even in the absence of Chol. Infrared spectroscopy suggested that Chol had negligible effects on the lipid chain order and packing at physiological skin temperature. Chol depletion of the model membranes or isolated human SC did not compromise the barrier function to water and two model permeants. On the contrary, the membrane with the Chol content reduced to 40% of the normal value, where no separated Chol was observed, was significantly less permeable than the control. Thus, a 0.4:1:1 M ratio of Chol/ceramides/fatty acids appears sufficient for skin lipids to limit water loss and prevent the entry of environmental substances. We speculate that the SC Chol domains may have roles in the skin other than barrier function.


Asunto(s)
Colesterol/química , Epidermis/química , Lípidos de la Membrana/química , Piel/química , Humanos , Tamaño de la Partícula , Permeabilidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...