Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 269: 115807, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091673

RESUMEN

Plastics have revolutionised human industries, thanks to their versatility and durability. However, their extensive use, coupled with inadequate waste disposal, has resulted in plastic becoming ubiquitous in every environmental compartment, posing potential risks to the economy, human health and the environment. Additionally, under natural conditions, plastic waste breaks down into microplastics (MPs<5 mm). The increasing quantity of MPs exerts a significant burden on the soil environment, particularly in agroecosystems, presenting a new stressor for soil-dwelling organisms. In this review, we delve into the effects of MP pollution on soil ecosystems, with a specific attention to (a) MP transport to soils, (b) potential changes of MPs under environmental conditions, (c) and their interaction with the physical, chemical and biological components of the soil. We aim to shed light on the alterations in the distribution, activity, physiology and growth of soil flora, fauna and microorganisms in response to MPs, offering an ecotoxicological perspective for environmental risk assessment of plastics. The effects of MPs are strongly influenced by their intrinsic traits, including polymer type, shape, size and abundance. By exploring the multifaceted interactions between MPs and the soil environment, we provide critical insights into the consequences of plastic contamination. Despite the growing body of research, there remain substantial knowledge gaps regarding the long-term impact of MPs on the soil. Our work underscores the importance of continued research efforts and the adoption of standardised approaches to address plastic pollution and ensure a sustainable future for our planet.


Asunto(s)
Ecosistema , Suelo , Humanos , Plásticos/química , Monitoreo del Ambiente , Contaminación Ambiental/efectos adversos
2.
Plants (Basel) ; 12(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37765446

RESUMEN

Plastics have inundated the world, with microplastics (MPs) being small particles, less than 5 mm in size, originating from various sources. They pervade ecosystems such as freshwater and marine environments, soils, and the atmosphere. MPs, due to their small size and strong adsorption capacity, pose a threat to plants by inhibiting seed germination, root elongation, and nutrient absorption. The accumulation of MPs induces oxidative stress, cytotoxicity, and genotoxicity in plants, which also impacts plant development, mineral nutrition, photosynthesis, toxic accumulation, and metabolite production in plant tissues. Furthermore, roots can absorb nanoplastics (NPs), which are then distributed to stems, leaves, and fruits. As MPs and NPs harm organisms and ecosystems, they raise concerns about physical damage and toxic effects on animals, and the potential impact on human health via food webs. Understanding the environmental fate and effects of MPs is essential, along with strategies to reduce their release and mitigate consequences. However, a full understanding of the effects of different plastics, whether traditional or biodegradable, on plant development is yet to be achieved. This review offers an up-to-date overview of the latest known effects of plastics on plants.

3.
J Biotechnol ; 360: 160-170, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36273669

RESUMEN

Decomposition of lignocellulosic plant biomass by four filamentous fungi was carried out to facilitate subsequent anaerobic degradation and biogas formation. Agricultural side products, wheat straw and corn stover and forestry energy plant willow chips were selected as plant biomass sources. The substrates were confronted by pure cultures of Penicillium aurantiogriseum (new isolate from rumen), Trichoderma reesei (DSM768), Gilbertella persicaria (SZMC11086) and Rhizomucor miehei (SZMC11005). In addition to total cellulolytic filter paper degradation activity, the production of endoglucanase, cellobiohydrolase, ß-glucosidase enzymes were followed during the pretreatment period, which lasted for 10 days at 37 °C. The products of pretreatments were subsequently tested for mesophilic biogas production in batch reactors. All 4 strains effectively pretreated the lignocellulosic substrates albeit in varying degrees, which was related to the level of the tested hydrolytic enzyme activities. Penicillium aurantiogriseum showed outstanding hydrolytic enzyme production and highest biogas yield from the partially degraded substrates. Corn stover was the best substrate for biomass decomposition and biogas production. Scanning electron microscopy confirmed the deep penetration of fungal hyphae into the lignocellulosic substrate in all cases.


Asunto(s)
Biocombustibles
4.
J Hazard Mater ; 436: 129255, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739774

RESUMEN

Personal protective equipment, used extensively during the COVID-19 pandemic, heavily burdened the environment due to improper waste management. Owing to their fibrous structure, layered non-woven polypropylene (PP) disposable masks release secondary fragments at a much higher rate than other plastic waste types, thus, posing a barely understood new form of ecological hazard. Here we show that PP mask fragments of different sizes induce morphogenic responses in plants during their early development. Using in vitro systems and soil-filled rhizotrons, we found that several PP mask treatments modified the root growth of Brassica napus (L.) regardless of the experimental system. The environment around the root and mask fragments seemed to influence the effect of PP fabric fragment contamination on early root growth. In soil, primary root length was clearly inhibited by larger PP mask fragments at 1 % concentration, while the two smallest sizes of applied mask fragments caused distinct, concentration-dependent changes in the lateral root numbers. Our results indicate that PP can act as a stressor: contamination by PP surgical masks affects plant growth and hence, warrants attention. Further investigations regarding the effects of plastic pollution on plant-soil interactions involving various soil types are urgently needed.


Asunto(s)
COVID-19 , Máscaras , Humanos , Pandemias , Plásticos , Suelo/química
5.
Biol Futur ; 72(3): 341-346, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34554554

RESUMEN

Biogas is the product of anaerobic digestion (AD) of organic waste and is considered to be one of the most valuable natural renewable energy carriers. Plant biomass represents the most abundant eco-friendly energy reservoir on Earth. However, the tenacious and heterogeneous structure of the lignocellulose-rich elements makes it difficult for the involved microbes to digest the recalcitrant substrates. Both the degradation process and the biogas production yield can be enhanced by appropriate pre-treatment of lignocellulosic materials. Filamentous fungi have been known as proficient colonizers of lignocellulosic plant tissues and have been recognized as producers of exceptionally rich and diverse hydrolytic enzymes. We tested Aspergillus nidulans, Trichoderma reesei, Rhizomucor miehei and Gilbertella persicaria filamentous fungal strains for pre-treatment of various agricultural lignocellulosic wastes. During the pre-treatment phase, the ß-glucosidase and endoglucanase activity was measured spectrophotometrically. In the AD step, methane production was monitored by gas chromatography. The preliminary results showed that all the applied strains (Aspergillus nidulans, Trichoderma reesei, Rhizomucor miehei and Gilbertella persicaria) were highly effective in producing both ß-glucosidase and endo-(1,4)-ß-D-glucanase enzymes, which might explain the greatly improved AD results. Pre-treatment with the above-mentioned filamentous fungi positively affected the biogas production, although the effect strongly depended on the selection of the fungal partner for any given biomass substrate. Depending on the used substrate and the pre-treatment strain, overall methane yields were elevated two-fold relative to the controls.


Asunto(s)
Agroquímicos/metabolismo , Biocombustibles/microbiología , Hongos/metabolismo , Residuos Industriales/análisis , Agroquímicos/síntesis química , Biocombustibles/normas , Hongos/química
6.
Plants (Basel) ; 9(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708788

RESUMEN

Metal-polluted areas, especially where municipal sewage is used as fertilizer, often have high concentrations of more than one metal. The development of the root system is regulated by a complex signaling network, which includes reactive oxygen and nitrogen species. The delicate balance of the endogenous signal system can be affected by various environmental stimuli including heavy metals (HMs) in excess. Our goal was to analyze the microelement homeostasis, root architecture, and to determine the underlying changes in the nitro-oxidative status in the root system of rapeseed (Brassica napus L.) and sunflower (Helianthus annuus L.) subjected to combined HM treatments. The effect of model-sewage in two different layouts was simulated in rhizotron system by only supplementing the highest HM concentrations (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) legally allowed. The two species reacted differently to combined HM treatment; compared to the relatively sensitive sunflower, rapeseed showed better metal translocation capability and root growth even at the more severe treatment, where the pattern of protein tyrosine nitration was reorganized. The obtained results, especially the increased nitric oxide content and changed pattern of tyrosine nitration in rapeseed, can indicate acclimation and species-specific nitro-oxidative responses to combined HM stress.

7.
Ann Clin Microbiol Antimicrob ; 15(1): 43, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27465344

RESUMEN

BACKGROUND: Certain legume plants produce a plethora of AMP-like peptides in their symbiotic cells. The cationic subgroup of the nodule-specific cysteine-rich (NCR) peptides has potent antimicrobial activity against gram-negative and gram-positive bacteria as well as unicellular and filamentous fungi. FINDINGS: It was shown by scanning and atomic force microscopies that the cationic peptides NCR335, NCR247 and Polymyxin B (PMB) affect differentially on the surfaces of Sinorhizobium meliloti bacteria. Similarly to PMB, both NCR peptides caused damages of the outer and inner membranes but at different extent and resulted in the loss of membrane potential that could be the primary reason of their antimicrobial activity. CONCLUSIONS: The primary reason for bacterial cell death upon treatment with cationic NCR peptides is the loss of membrane potential.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Proteínas de Plantas/farmacología , Sinorhizobium meliloti/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/metabolismo , Membrana Celular/ultraestructura , Medicago truncatula/fisiología , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Proteínas de Plantas/metabolismo , Polimixina B/farmacología , Nódulos de las Raíces de las Plantas/fisiología , Sinorhizobium meliloti/crecimiento & desarrollo , Sinorhizobium meliloti/ultraestructura
8.
Bioresour Technol ; 178: 254-261, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25316194

RESUMEN

This study demonstrates that appropriate adaptation of the microbial community to protein-rich biomass can lead to sustainable biogas production. The process of acclimation to these unusual mono-substrates was controlled by the protease activity of the microbial community. Meat extract (C/N=3.32) and kitchen waste (C/N=12.43) were used as biogas substrates. Metagenome analysis highlighted several mesophilic strains that displayed a preference for protein degradation. Bacillus coagulans, Bacillus subtilis and Pseudomonas fluorescens were chosen for detailed investigation. Pure cultures were added to biogas reactors fed solely with protein-rich substrates. The bioaugmentation resulted in a 50% increase in CH4 production even without any acclimation. The survival and biological activity of the added bacteria were followed in fed-batch fermenters by qPCR. Stable biogas production was observed for an extended period of time in laboratory CSTR reactors fed with biomass of low C/N.


Asunto(s)
Biocombustibles , Biotecnología/métodos , Metagenómica , Proteínas/química , Anaerobiosis , Bacterias/metabolismo , Técnicas de Cultivo Celular por Lotes , Ácidos Grasos Volátiles/análisis , Carne , Verduras/química , Residuos/análisis
9.
PLoS One ; 8(10): e77265, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146974

RESUMEN

It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in the community composition in the course of the process.


Asunto(s)
Biocombustibles , Biomasa , Residuos Industriales , Acetatos/química , Compuestos de Amonio/química , Animales , Reactores Biológicos , Biotransformación , Sangre/metabolismo , Sangre/microbiología , Caseínas/química , Caseínas/metabolismo , Activación Enzimática , Ácidos Grasos/química , Fermentación , Microbiota , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Especificidad por Sustrato , Porcinos , Factores de Tiempo
10.
Bioresour Technol ; 131: 121-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23340109

RESUMEN

Terminal restriction fragment length polymorphism (T-RFLP) was applied to study the changes in the composition of the methanogens of biogas-producing microbial communities on adaptation to protein-rich monosubstrates such as casein and blood. Specially developed laboratory scale (5-L) continuously stirred tank reactors have been developed and used in these experiments. Sequencing of the appropriate T-RF fragments selected from a methanogen-specific (mcrA gene-based) library revealed that the methanogens responded to the unconventional substrates by changing the community structure. T-RFLP of the 16S rDNA gene confirmed the findings.


Asunto(s)
Archaea/aislamiento & purificación , Archaea/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Biocombustibles/microbiología , Reactores Biológicos/microbiología , Metano/metabolismo , Consorcios Microbianos/fisiología , Proteínas/metabolismo , Archaea/genética , Metano/aislamiento & purificación , Especificidad de la Especie
11.
Biotechnol Biofuels ; 5: 41, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22673110

RESUMEN

BACKGROUND: Renewable energy production is currently a major issue worldwide. Biogas is a promising renewable energy carrier as the technology of its production combines the elimination of organic waste with the formation of a versatile energy carrier, methane. In consequence of the complexity of the microbial communities and metabolic pathways involved the biotechnology of the microbiological process leading to biogas production is poorly understood. Metagenomic approaches are suitable means of addressing related questions. In the present work a novel high-throughput technique was tested for its benefits in resolving the functional and taxonomical complexity of such microbial consortia. RESULTS: It was demonstrated that the extremely parallel SOLiD™ short-read DNA sequencing platform is capable of providing sufficient useful information to decipher the systematic and functional contexts within a biogas-producing community. Although this technology has not been employed to address such problems previously, the data obtained compare well with those from similar high-throughput approaches such as 454-pyrosequencing GS FLX or Titanium. The predominant microbes contributing to the decomposition of organic matter include members of the Eubacteria, class Clostridia, order Clostridiales, family Clostridiaceae. Bacteria belonging in other systematic groups contribute to the diversity of the microbial consortium. Archaea comprise a remarkably small minority in this community, given their crucial role in biogas production. Among the Archaea, the predominant order is the Methanomicrobiales and the most abundant species is Methanoculleus marisnigri. The Methanomicrobiales are hydrogenotrophic methanogens. Besides corroborating earlier findings on the significance of the contribution of the Clostridia to organic substrate decomposition, the results demonstrate the importance of the metabolism of hydrogen within the biogas producing microbial community. CONCLUSIONS: Both microbiological diversity and the regulatory role of the hydrogen metabolism appear to be the driving forces optimizing biogas-producing microbial communities. The findings may allow a rational design of these communities to promote greater efficacy in large-scale practical systems. The composition of an optimal biogas-producing consortium can be determined through the use of this approach, and this systematic methodology allows the design of the optimal microbial community structure for any biogas plant. In this way, metagenomic studies can contribute to significant progress in the efficacy and economic improvement of biogas production.

12.
Environ Technol ; 31(8-9): 1017-24, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20662389

RESUMEN

Caldicellulosiruptor saccharolyticus has attracted considerable attention by virtue of its ability to degrade various polysaccharide, oligosaccharide and monosaccharide substrates at temperatures above 70 degrees C, while its ability to convert various sugars to hydrogen has led to C. saccharolyticus being selected for the fermentative production of hydrogen. In this study, the utilization of a pure cellulosic substrate and mixed biomasses of plant origin was investigated. Cellulase biosynthesis can be triggered by growing cells on various monomeric carbohydrates, e.g. glucose or fructose. Pretreatment with cellulase-producing Bacilli improves the hydrogen yield, indicating that C. saccharolyticus alone can only partially decompose cellulosic substrates. The hydrogen-producing activity of C. saccharolyticus can be exploited in biogas technologies. With appropriate induction of the polymer-degrading enzymes, C. saccharolyticus may become a prime candidate with which to improve the yield and efficacy of practical hydrogen- and biogas-producing processes.


Asunto(s)
Biocombustibles , Celulosa/metabolismo , Bacterias Grampositivas/metabolismo , Hidrógeno/metabolismo , Microbiología Industrial/métodos , Recuento de Colonia Microbiana , Fermentación
13.
J Agric Food Chem ; 52(25): 7444-52, 2004 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-15675786

RESUMEN

Our gas chromatography-mass spectrometry method--developed for the simultaneous quantitation of mono-, di-, and trisaccharides, sugar alcohols, caboxylic and amino acids, measured as their trimethylsilyl-(oxime) ether/ester derivatives, from one solution by a single injection, prepared in the presence of the fruit matrix--has been extended/utilized for special purposes. The compositions of (i) freshly harvested and stored sour cherries (Prunus cerasus), (ii) apples obtained from organic and integrated productions (Malus domestica), and (iii) green and ripe bers (Zizyphus mauritiana L.) were compared. On the basis of earlier, basic researches (derivatization, quantitation, and fragmentation studies of authentic compounds), we demonstrate the reproducible quantitation of the main and minor constituents in a wide concentration range (approximately 1 x 10(-)(3) to >/=40%, in total up to < or =98%, calculated on dry matter basis of the fruit matrices). Reproducibility of quantitations, calculated on the basis of their total ion current values, provided an average reproducibility of 3.3 (sour cherries), 6.2 (apple), and 4.3 (ber) RSD %, respectively.


Asunto(s)
Carbohidratos/análisis , Ácidos Carboxílicos/análisis , Malus/química , Prunus/química , Alcoholes del Azúcar/análisis , Ziziphus/química , Alimentos Orgánicos/análisis , Frutas/química , Cromatografía de Gases y Espectrometría de Masas , Reproducibilidad de los Resultados , Compuestos de Trimetilsililo/análisis , Compuestos de Trimetilsililo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...