Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Naturwissenschaften ; 111(4): 34, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913166

RESUMEN

With ongoing insect declines, species expanding in distribution and abundance deserve attention, as understanding their success may help design conservation strategies for less successful species. Common causes of these successes include warmer climates, novel resources, and exploiting land use change, including land abandonment. These factors affect the nymphalid butterfly Neptis rivularis, developing on Spiraea spp. shrubs and reaching the north-western limits of its trans-Palearctic distribution in Central Europe. We combined mark-recapture, behaviour analysis, and distribution modelling to study N. rivularis in wetlands of the Trebonsko Protected Landscape (IUCN category V). The long-living adults (up to 4 weeks) spent a considerable amount of time searching for partners, ovipositing and nectaring at Spiraea shrubs, alternating this with stays in tree crowns, where they located cool shelters, spent nights, and presumably fed on honeydew. They formed high-density populations (310 adults/ha), exploiting high host plant abundance. They adhered to floodplains and to conditions of relatively mild winters. The ongoing Spiraea encroachment of abandoned alluvial grasslands is, thus, a transient situation, ultimately followed by forest encroachment. Rewilding the habitats by introducing native ungulates presents an opportunity to restore the disturbance regime of the sites. The increased resource supply combined with a warming climate has opened up temperate Europe to colonization by N. rivularis.


Asunto(s)
Mariposas Diurnas , Humedales , Animales , Mariposas Diurnas/fisiología , República Checa
2.
BMC Genomics ; 9: 237, 2008 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-18495015

RESUMEN

BACKGROUND: Genomics of rye (Secale cereale L.) is impeded by its large nuclear genome (1C approximately 7,900 Mbp) with prevalence of DNA repeats (> 90%). An attractive possibility is to dissect the genome to small parts after flow sorting particular chromosomes and chromosome arms. To test this approach, we have chosen 1RS chromosome arm, which represents only 5.6% of the total rye genome. The 1RS arm is an attractive target as it carries many important genes and because it became part of the wheat gene pool as the 1BL.1RS translocation. RESULTS: We demonstrate that it is possible to sort 1RS arm from wheat-rye ditelosomic addition line. Using this approach, we isolated over 10 million of 1RS arms using flow sorting and used their DNA to construct a 1RS-specific BAC library, which comprises 103,680 clones with average insert size of 73 kb. The library comprises two sublibraries constructed using HindIII and EcoRI and provides a deep coverage of about 14-fold of the 1RS arm (442 Mbp). We present preliminary results obtained during positional cloning of the stem rust resistance gene SrR, which confirm a potential of the library to speed up isolation of agronomically important genes by map-based cloning. CONCLUSION: We present a strategy that enables sorting short arms of several chromosomes of rye. Using flow-sorted chromosomes, we have constructed a deep coverage BAC library specific for the short arm of chromosome 1R (1RS). This is the first subgenomic BAC library available for rye and we demonstrate its potential for positional gene cloning. We expect that the library will facilitate development of a physical contig map of 1RS and comparative genomics of the homoeologous chromosome group 1 of wheat, barley and rye.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Secale/genética , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Citometría de Flujo , Genoma de Planta , Biblioteca Genómica , Hibridación Fluorescente in Situ , Cariotipificación , Enfermedades de las Plantas/genética , Translocación Genética , Triticum/genética
3.
Plant J ; 47(6): 977-86, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16911585

RESUMEN

Common wheat (Triticum aestivum L., 2n = 6x = 42) is a polyploid species possessing one of the largest genomes among the cultivated crops (1C is approximately 17 000 Mb). The presence of three homoeologous genomes (A, B and D), and the prevalence of repetitive DNA make sequencing the wheat genome a daunting task. We have developed a novel 'chromosome arm-based' strategy for wheat genome sequencing to simplify this task; this relies on sub-genomic libraries of large DNA inserts. In this paper, we used a di-telosomic line of wheat to isolate six million copies of the short arm of chromosome 1B (1BS) by flow sorting. Chromosomal DNA was partially digested with HindIII and used to construct an arm-specific BAC library. The library consists of 65 280 clones with an average insert size of 82 kb. Almost half of the library (45%) has inserts larger than 100 kb, while 18% of the inserts range in size between 75 and 100 kb, and 37% are shorter than 75 kb. We estimated the chromosome arm coverage to be 14.5-fold, giving a 99.9% probability of identifying a clone corresponding to any sequence on the short arm of 1B. Each chromosome arm in wheat can be flow sorted from an appropriate cytogenetic stock, and we envisage that the availability of chromosome arm-specific BAC resources in wheat will greatly facilitate the development of ready-to-sequence physical maps and map-based gene cloning.


Asunto(s)
Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Genoma de Planta , Triticum/genética
4.
Theor Appl Genet ; 113(4): 651-9, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16810504

RESUMEN

Isolation of mitotic chromosomes using flow cytometry is an attractive way to dissect nuclear genomes into their individual chromosomal components or portions of them. This approach is especially useful in plants with complex genomes, where it offers a targeted and hence economical approach to genome analysis and gene cloning. In several plant species, DNA of flow-sorted chromosomes has been used for isolation of molecular markers from specific genome regions, for physical mapping using polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH), for integration of genetic and physical maps and for construction of chromosome-specific DNA libraries, including those cloned in bacterial artificial chromosome vectors. Until now, chromosome analysis and sorting using flow cytometry (flow cytogenetics) has found little application in barley (2n = 14, 1C approximately 5,100 Mbp) because of the impossibility of discriminating and sorting individual chromosomes, except for the smallest chromosome 1H and some translocation chromosomes with DNA content significantly different from the remaining chromosomes. In this work, we demonstrate that wheat-barley ditelosomic addition lines can be used to sort any arm of barley chromosomes 2H-7H. Thus, the barley genome can be dissected into fractions representing only about 6-12% of the total genome. This advance makes the flow cytogenetics an attractive tool, which may greatly facilitate genome analysis and gene cloning in barley.


Asunto(s)
Cromosomas de las Plantas , Citometría de Flujo/métodos , Genoma de Planta , Hordeum/genética , Núcleo Celular/genética , Cromosomas de las Plantas/ultraestructura , Triticum/genética
5.
Genetics ; 170(2): 823-9, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15802508

RESUMEN

This study evaluates the potential of flow cytometry for chromosome sorting in durum wheat (Triticum turgidum Desf. var. durum, 2n = 4x = 28). Histograms of fluorescence intensity (flow karyotypes) obtained after the analysis of DAPI-stained chromosomes consisted of three peaks. Of these, one represented chromosome 3B, a small peak corresponded to chromosomes 1A and 6A, and a large peak represented the remaining 11 chromosomes. Chromosomes sorted onto microscope slides were identified after fluorescence in situ hybridization (FISH) with probes for GAA microsatellite, pSc119.2, and Afa repeats. Genomic distribution of these sequences was determined for the first time in durum wheat and a molecular karyotype has been developed for this crop. Flow karyotyping in double-ditelosomic lines of durum wheat revealed that the lines facilitated sorting of any arm of the wheat A- and B-genome chromosomes. Compared to hexaploid wheat, flow karyotype of durum wheat is less complex. This property results in better discrimination of telosomes and high purities in sorted fractions, ranging from 90 to 98%. We have demonstrated that large insert libraries can be created from DNA purified using flow cytometry. This study considerably expands the potential of flow cytogenetics for use in wheat genomics and opens the possibility of sequencing the genome of this important crop one chromosome arm at a time.


Asunto(s)
Genoma de Planta , Triticum/genética , Ciclo Celular , Separación Celular , Mapeo Cromosómico , Cromosomas/ultraestructura , Cromosomas de las Plantas , ADN/genética , ADN de Plantas , Citometría de Flujo , Técnicas Genéticas , Genoma , Hibridación Fluorescente in Situ , Cariotipificación , Metafase , Repeticiones de Microsatélite , Modelos Genéticos , Mapeo Físico de Cromosoma , Ploidias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA