Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177375

RESUMEN

Fused Deposition Modelling (FDM) 3D printers have gained significant popularity in the pharmaceutical and biomedical industries. In this study, a new biomaterial filament was developed by preparing a polylactic acid (PLA)/calcium peroxide (CPO) composite using wet solution mixing and extrusion. The content of CPO varied from 3% to 24% wt., and hot-melt extruder parameters were optimised to fabricate 3D printable composite filaments. The filaments were characterised using an X-ray diffraction analysis, surface morphology assessment, evaluation of filament extrudability, microstructural analysis, and examination of their rheological and mechanical properties. Our findings indicate that increasing the CPO content resulted in increased viscosity at 200 °C, while the PLA/CPO samples showed microstructural changes from crystalline to amorphous. The mechanical strength and ductility of the composite filaments decreased except for in the 6% CPO filament. Due to its acceptable surface morphology and strength, the PLA/CPO filament with 6% CPO was selected for printability testing. The 3D-printed sample of a bone scaffold exhibited good printing quality, demonstrating the potential of the PLA/CPO filament as an improved biocompatible filament for FDM 3D printing.

2.
J Mech Behav Biomed Mater ; 136: 105447, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36272224

RESUMEN

Fused deposition modelling (FDM) is an additive manufacturing technology used to create functional and complex geometries directly from computer-generated models. This technique can be utilised to generate cellular structures with controllable pore size, pore shape, and porosity. Cellular structures are fundamental in orthopaedics scaffolds because of its low elastic modulus, high compressive strength, and adequate cell accommodation spaces. This paper aims at investigating and optimising the FDM additive manufacturing process parameters of polylactic Acid (PLA) for two lattice structures namely Schoen Gyroid and Schwarz Primitive. The effect of additive manufacturing critical process parameters including layer height, flow rate, and print speed on the geometrical accuracy and compressive strength of the specimens were analysed. In addition, other parameters that have minimal effect on the geometrical accuracy of the printed parts were discussed. A Full Factorial Analysis (FFA) using Minitab software was undertaken to identify the perfect combination of printing parameters to provide the most geometrically accurate structure. In this study, samples of the Schoen Gyroid and the Schwarz Primitive lattices and a solid control cylinder were 3D printed using the ideal printing combination to assess the manufacturability, the geometrical accuracy, and the mechanical behaviour of both designs. It was found that the optimised FDM process parameters for the studied cellular structures were a layer height of 0.16 mm, a printing speed of 50 mm/s and a flow rate of 90%. As a result of using these parameters, the solid, Schoen Gyroid and Schwarz Primitive specimens demonstrated elastic moduli values of 951 MPa, 264 MPa, and 221 MPa, respectively. In addition, the Schoen Gyroid and the Schwarz Primitive have reached their stress limits at around 8.68 MPa and 7.06 MPa, respectively. It was noticed that the Schoen Gyroid structure exhibited ∼ 18% higher compressive strength and ∼ 16% higher elastic modulus compared to the Schwarz Primitive structure for the same volume fraction of porosity, overall dimensions, and the manufacturing process parameters. Although both structures revealed mechanical properties that fall within the range of the human trabecular bone, but Schoen Gyroid exhibited improved structural integrity performance that is evident by its post-yield behaviour.


Asunto(s)
Poliésteres , Andamios del Tejido , Humanos , Andamios del Tejido/química , Poliésteres/química , Hueso Esponjoso , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...