Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 37(11): e23223, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37781971

RESUMEN

Organic anion transporting polypeptides OATP1A2, OATP1B1, OATP1B3 and OATP2B1 are Na+ - and ATP-independent exchangers of large, organic compounds, encompassing structurally diverse xenobiotics, including various drugs. These OATPs influence intestinal absorption (OATP2B1), hepatic clearance (OATP1B1/3) and blood to brain penetration (OATP1A2, OATP2B1) of their drug substrates. Consequently, OATP-mediated drug or food interactions may lead to altered pharmacokinetics and toxicity. During drug development, investigation of hepatic OATP1B1 and OATP1B3 is recommended by international regulatory agencies. Most frequently, OATP-drug interactions are investigated in an indirect assay, i.e., by examining uptake inhibition of a radioactive or fluorescent probe. However, indirect assays do not distinguish between transported substrates and non-transported OATP inhibitors. To fill this hiatus, a novel assay, termed competitive counterflow (CCF) has been developed and has since been applied for several OATPs to differentiate between substrates and non-transported inhibitors. However, previous OATP CCF assays, with the exception of that for OATP1B1, used radioactive probes. In the current study, we demonstrate that sulforhodamine 101 or pyranine can be used as fluorescent probes in a CCF assay to identify transported substrates of OATP1A2, or OATPs 1B1, 1B3 and 2B1, respectively. With the help of the newly developed fluorescence-based CCF method, we identify the FDA-approved anti-protozoal drug, pentamidine as a unique substrate of OATP1A2. Furthermore, we confirm the selective, OATP1A2-mediated uptake of pentamidine in a cytotoxicity assay. Based on our results, OATP1A2 may be an important determinant of pentamidine transport through the blood-brain barrier.


Asunto(s)
Transportadores de Anión Orgánico , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Pentamidina , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Fluorescencia , Transporte Biológico , Péptidos
2.
Biochem Pharmacol ; 175: 113865, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142727

RESUMEN

Expression of the ABCG2 multidrug transporter is a marker of cancer stem cells and a predictor of recurrent malignant disease. Understanding how human ABCG2 expression is modulated by pharmacotherapy is crucial in guiding therapeutic recommendations and may aid rational drug development. Genome edited reporter cells are useful in investigating gene regulation and visualizing protein activity in live cells but require precise targeting to preserve native regulatory regions. Here, we describe a fluorescent reporter assay that allows the noninvasive assessment of ABCG2 regulation in human lung adenocarcinoma cells. Using CRISPR-Cas9 gene editing coupled with homology-directed repair, we targeted an EGFP coding sequence to the translational start site of ABCG2, generating ABCG2 knock-out and in situ tagged ABCG2 reporter cells. Using the engineered cell lines, we show that ABCG2 is upregulated by a number of anti-cancer medications, HDAC inhibitors, hypoxia-mimicking agents and glucocorticoids, supporting a model in which ABCG2 is under the control of a general stress response. To our knowledge, this is the first description of a fluorescent reporter assay system designed to follow the endogenous regulation of a human ABC transporter in live cells. The information gained may guide therapy recommendations and aid rational drug design.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Proteínas de Neoplasias/genética , Células A549 , Antineoplásicos/farmacología , Técnicas de Cultivo de Célula , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Genes Reporteros , Humanos , Plásmidos
3.
Expert Opin Drug Metab Toxicol ; 13(4): 409-424, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27783531

RESUMEN

INTRODUCTION: The in vivo fate and effectiveness of a drug depends highly on its absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Organic anion transporting polypeptides (OATPs) are membrane proteins involved in the cellular uptake of various organic compounds, including clinically used drugs. Since OATPs are significant players in drug absorption and distribution, modulation of OATP function via pharmacotherapy with OATP substrates/inhibitors, or modulation of their expression, affects drug pharmacokinetics. Given their cancer-specific expression, OATPs may also be considered anticancer drug targets. Areas covered: We describe the human OATP family, discussing clinically relevant consequences of altered OATP function. We offer a critical analysis of published data on the role of OATPs in ADME and in drug-drug interactions, especially focusing on OATP1A2, 1B1, 1B3 and 2B1. Expert opinion: Four members of the OATP family, 1A2, 1B1, 1B3 and 2B1, have been characterized in detail. As biochemical and pharmacological knowledge on the other OATPs is lacking, it seems timely to direct research efforts towards developing the experimental framework needed to investigate the transport mechanism and substrate specificity of the poorly described OATPs. In addition, elucidating the role of OATPs in tumor development and therapy response are critical avenues for further research.


Asunto(s)
Transportadores de Anión Orgánico/metabolismo , Péptidos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Antineoplásicos/farmacología , Transporte Biológico , Interacciones Farmacológicas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transportadores de Anión Orgánico/genética , Preparaciones Farmacéuticas/administración & dosificación , Farmacocinética , Especificidad por Sustrato
4.
Biochem Pharmacol ; 98(4): 649-58, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26415544

RESUMEN

Organic Anion Transporting Polypeptides (OATPs), encoded by genes of the Solute Carrier Organic Anion (SLCO) family, are transmembrane proteins involved in the uptake of various compounds of endogenous or exogenous origin. In addition to their physiological roles, OATPs influence the pharmacokinetics and drug-drug interactions of several clinically relevant compounds. To examine the function and molecular interactions of human OATPs, including several poorly characterized family members, we expressed all 11 human OATPs at high levels in the baculovirus-Sf9 cell system. We measured the temperature- and inhibitor-sensitive cellular accumulation of sodium fluorescein and fluorescein-methotrexate, two fluorescent substrates of the OATPs, OATP1B1 and 1B3. OATP1B1 and 1B3 were functional in Sf9 cells, showing rapid uptake (t1/2(fluorescein-methotrexate) 2.64 and 4.16 min, and t1/2(fluorescein) 6.71 and 5.58 min for OATP1B1 and 1B3, respectively) and high-affinity transport (Km(fluorescein-methotrexate) 0.23 and 0.53 µM, and Km(fluorescein) 25.73 and 38.55 µM for OATP1B1 and 1B3, respectively) of both substrates. We found that sodium fluorescein is a general substrate of all human OATPs: 1A2, 1B1, 1B3, 1C1, 2A1, 2B1, 3A1, 4A1, 4C1, 5A1 and 6A1, while fluorescein-methotrexate is only transported by 1B1, 1B3, 1A2 and 2B1. Acidic extracellular pH greatly facilitated fluorescein uptake by all OATPs, and new molecular interactions were detected (between OATP2B1 and Imatinib, OATP3A1, 5A1 and 6A1 and estradiol 17-ß-d-glucuronide, and OATP1C1 and 4C1 and prostaglandin E2). These studies demonstrate, for the first time, that the insect cell system is suitable for the functional analysis of the entire human OATP family, and for drug-OATP interaction screening.


Asunto(s)
Fluoresceína/metabolismo , Transportadores de Anión Orgánico/biosíntesis , Transportadores de Anión Orgánico/genética , Animales , Línea Celular , Regulación de la Expresión Génica , Humanos , Insectos , Transportadores de Anión Orgánico Sodio-Independiente/biosíntesis , Transportadores de Anión Orgánico Sodio-Independiente/genética , Especificidad por Sustrato/fisiología
5.
Proc Natl Acad Sci U S A ; 111(20): E2130-9, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24808134

RESUMEN

ApolipoproteinL1 (APOL1) protects humans and some primates against several African trypanosomes. APOL1 genetic variants strongly associated with kidney disease in African Americans have additional trypanolytic activity against Trypanosoma brucei rhodesiense, the cause of acute African sleeping sickness. We combined genetic, physiological, and biochemical studies to explore coevolution between the APOL1 gene and trypanosomes. We analyzed the APOL1 sequence in modern and archaic humans and baboons along with geographic distribution in present day Africa to understand how the kidney risk variants evolved. Then, we tested Old World monkey, human, and engineered APOL1 variants for their ability to kill human infective trypanosomes in vivo to identify the molecular mechanism whereby human trypanolytic APOL1 variants evade T. brucei rhodesiense virulence factor serum resistance-associated protein (SRA). For one APOL1 kidney risk variant, a two-residue deletion of amino acids 388 and 389 causes a shift in a single lysine residue that mimics the Old World monkey sequence, which augments trypanolytic activity by preventing SRA binding. A second human APOL1 kidney risk allele, with an amino acid substitution that also restores sequence alignment with Old World monkeys, protected against T. brucei rhodesiense due in part to reduced SRA binding. Both APOL1 risk variants induced tissue injury in murine livers, the site of transgenic gene expression. Our study shows that both genetic variants of human APOL1 that protect against T. brucei rhodesiense have recapitulated molecular signatures found in Old World monkeys and raises the possibility that APOL1 variants have broader innate immune activity that extends beyond trypanosomes.


Asunto(s)
Apolipoproteínas/genética , Evolución Biológica , Resistencia a la Enfermedad/genética , Lipoproteínas HDL/genética , Tripanosomiasis Africana/genética , África , Alelos , Animales , Apolipoproteína L1 , Apolipoproteínas/fisiología , Frecuencia de los Genes , Geografía , Haplotipos , Humanos , Lipoproteínas HDL/fisiología , Lisina/genética , Mandrillus , Ratones , Ratones Transgénicos , Modelos Teóricos , Papio/genética , Polimorfismo Genético , Trypanosoma brucei rhodesiense
6.
J Vis Exp ; (87)2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24837006

RESUMEN

Efficient expression of transgenes in vivo is of critical importance in studying gene function and developing treatments for diseases. Over the past years, hydrodynamic gene delivery (HGD) has emerged as a simple, fast, safe and effective method for delivering transgenes into rodents. This technique relies on the force generated by the rapid injection of a large volume of physiological solution to increase the permeability of cell membranes of perfused organs and thus deliver DNA into cells. One of the main advantages of HGD is the ability to introduce transgenes into mammalian cells using naked plasmid DNA (pDNA). Introducing an exogenous gene using a plasmid is minimally laborious, highly efficient and, contrary to viral carriers, remarkably safe. HGD was initially used to deliver genes into mice, it is now used to deliver a wide range of substances, including oligonucleotides, artificial chromosomes, RNA, proteins and small molecules into mice, rats and, to a limited degree, other animals. This protocol describes HGD in mice and focuses on three key aspects of the method that are critical to performing the procedure successfully: correct insertion of the needle into the vein, the volume of injection and the speed of delivery. Examples are given to show the application of this method to the transient expression of two genes that encode secreted, primate-specific proteins, apolipoprotein L-I (APOL-I) and haptoglobin-related protein (HPR).


Asunto(s)
ADN/administración & dosificación , ADN/genética , Proteínas/genética , Transfección/métodos , Animales , Femenino , Hidrodinámica , Ratones , Plásmidos/administración & dosificación , Plásmidos/genética , Biosíntesis de Proteínas/genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...