Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(6)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39136660

RESUMEN

This study provides accurate results for the electronic stopping cross sections of H, He, N, and Ne in silicon in low to intermediate energy ranges using various non-perturbative theoretical methods, including real-time time-dependent density functional theory, transport cross section, and induced-density approach. Recent experimental findings [Ntemou et al., Phys. Rev. B 107, 155145 (2023)] revealed discrepancies between the estimates of density functional theory and the observed values. We show that these discrepancies vanish by considering the nonuniform electron density of the deeper silicon bands for ion velocities approaching zero (v → 0). This indicates that mechanisms such as "elevator" and "promotion," which can dynamically excite deeper-band electrons, are active, enabling a localized free-electron gas to emulate ion energy loss, as pointed out by Lim et al. [Phys. Rev. Lett. 116, 043201 (2016)]. The observation and the description of a velocity-proportionality breakdown in electronic stopping cross sections at very low velocities are considered to be a signature of the contributions of deeper-band electrons.

2.
Sci Rep ; 14(1): 9868, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684890

RESUMEN

This comprehensive study delves into the intricate interplay between protons and organic polymers, offering insights into proton therapy in cancer treatment. Focusing on the influence of the spatial electron density distribution on stopping power estimates, we employed real-time time-dependent density functional theory coupled with the Penn method. Surprisingly, the assumption of electron density homogeneity in polymers is fundamentally flawed, resulting in an overestimation of stopping power values at energies below 2 MeV. Moreover, the Bragg rule application in specific compounds exhibited significant deviations from experimental data around the stopping maximum, challenging established norms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA