Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790532

RESUMEN

Background: The incidental use of statins during radiation therapy has been associated with a reduced long-term risk of developing atherosclerotic cardiovascular disease. Objectives: Determine if irradiation causes chronic vascular injury and whether short-term administration of statins during and after irradiation is sufficient to prevent chronic injury compared to long-term administration. Methods: C57Bl/6 mice were pretreated with pravastatin for 72 hours and then exposed to 12 Gy x-ray head-and-neck irradiation. Subsequently, they received pravastatin either for one additional day or for one year. Carotid arteries were tested for vascular reactivity and altered gene expression one year after irradiation. Results: Treatment with pravastatin for 24 hours reduced the loss of endothelium-dependent vasorelaxation and protected against enhanced vasoconstriction after IR. It reduced the expression of some markers associated with inflammation and oxidative stress and modulated that of subunits of the voltage and Ca2+ activated K+ (BK) channel in the carotid artery one year after irradiation. Treatment with pravastatin for one year completely reversed the changes caused by irradiation. Conclusions: In mice, short-term administration of pravastatin is sufficient to reduce chronic vascular injury after irradiation. Long-term administration eliminates the effects of irradiation. These findings suggest that a prospective treatment strategy involving statins could be effective in patients undergoing radiation therapy. The optimal duration of treatment in humans has yet to be determined.

2.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629079

RESUMEN

Type 2 diabetes (T2D) is associated with increased risk of atherosclerotic vascular disease due to excessive vascular smooth muscle cell (VSMC) proliferation. Here, we investigated the role of mitochondrial dysfunction and Ca2+ levels in VSMC proliferation in T2D. VSMCs were isolated from normoglycemic and T2D-like mice induced by diet. The effects of mitochondrial Ca2+ uptake were studied using mice with selectively inhibited mitochondrial Ca2+/calmodulin-dependent kinase II (mtCaMKII) in VSMCs. Mitochondrial transition pore (mPTP) was blocked using ER-000444793. VSMCs from T2D compared to normoglycemic mice exhibited increased proliferation and baseline cytosolic Ca2+ levels ([Ca2+]cyto). T2D cells displayed lower endoplasmic reticulum Ca2+ levels, reduced mitochondrial Ca2+ entry, and increased Ca2+ leakage through the mPTP. Mitochondrial and cytosolic Ca2+ transients were diminished in T2D cells upon platelet-derived growth factor (PDGF) administration. Inhibiting mitochondrial Ca2+ uptake or the mPTP reduced VSMC proliferation in T2D, but had contrasting effects on [Ca2+]cyto. In T2D VSMCs, enhanced activation of Erk1/2 and its upstream regulators was observed, driven by elevated [Ca2+]cyto. Inhibiting mtCaMKII worsened the Ca2+ imbalance by blocking mitochondrial Ca2+ entry, leading to further increases in [Ca2+]cyto and Erk1/2 hyperactivation. Under these conditions, PDGF had no effect on VSMC proliferation. Inhibiting Ca2+-dependent signaling in the cytosol reduced excessive Erk1/2 activation and VSMC proliferation. Our findings suggest that altered Ca2+ handling drives enhanced VSMC proliferation in T2D, with mitochondrial dysfunction contributing to this process.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Animales , Ratones , Calcio , Factor de Crecimiento Derivado de Plaquetas , Miocitos del Músculo Liso , Proliferación Celular
3.
Front Cardiovasc Med ; 10: 1133315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404737

RESUMEN

Background: The incidental use of statins during radiation therapy has been associated with a reduced long-term risk of developing atherosclerotic cardiovascular disease. However, the mechanisms by which statins protect the vasculature from irradiation injury remain poorly understood. Objectives: Identify the mechanisms by which the hydrophilic and lipophilic statins pravastatin and atorvastatin preserve endothelial function after irradiation. Methods: Cultured human coronary and umbilical vein endothelial cells irradiated with 4 Gy and mice subjected to 12 Gy head-and-neck irradiation were pretreated with statins and tested for endothelial dysfunction, nitric oxide production, oxidative stress, and various mitochondrial phenotypes at 24 and 240 h after irradiation. Results: Both pravastatin (hydrophilic) and atorvastatin (lipophilic) were sufficient to prevent the loss of endothelium-dependent relaxation of arteries after head-and-neck irradiation, preserve the production of nitric oxide by endothelial cells, and suppress the cytosolic reactive oxidative stress associated with irradiation. However, only pravastatin inhibited irradiation-induced production of mitochondrial superoxide; damage to the mitochondrial DNA; loss of electron transport chain activity; and expression of inflammatory markers. Conclusions: Our findings reveal some mechanistic underpinnings of the vasoprotective effects of statins after irradiation. Whereas both pravastatin and atorvastatin can shield from endothelial dysfunction after irradiation, pravastatin additionally suppresses mitochondrial injury and inflammatory responses involving mitochondria. Clinical follow-up studies will be necessary to determine whether hydrophilic statins are more effective than their lipophilic counterparts in reducing the risk of cardiovascular disease in patients undergoing radiation therapy.

4.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824758

RESUMEN

Background: Type 2 diabetes (T2D) is associated with a strongly increased risk for restenosis after angioplasty driven by proliferation of vascular smooth muscle cells (VSMCs). Here, we sought to determine whether and how mitochondrial dysfunction in T2D drives VSMC proliferation with a focus on ROS and intracellular [Ca 2+ ] that both drive cell proliferation, occur in T2D and are regulated by mitochondrial activity. Methods: Using a diet-induced mouse model of T2D, the inhibition of the mitochondrial Ca 2+ /calmodulin-dependent kinase II (mtCaMKII), a regulator of Ca 2+ entry via the mitochondrial Ca 2+ uniporter selectively in VSMCs, we performed in vivo phenotyping after mechanical injury and established the mechanisms of excessive proliferation in cultured VSMCs. Results: In T2D, the inhibition of mtCaMKII reduced both neointima formation after mechanical injury and the proliferation of cultured VSMCs. VSMCs from T2D mice displayed accelerated proliferation, reduced mitochondrial Ca 2+ entry and membrane potential with elevated baseline [Ca 2+ ] cyto compared to cells from normoglycemic mice. Accelerated proliferation after PDGF treatment was driven by activation of Erk1/2 and its upstream regulators. Hyperactivation of Erk1/2 was Ca 2+ -dependent rather than mitochondrial ROS-driven Ca 2+ -dependent and included the activation of CaMKII in the cytosol. The inhibition of mtCaMKII exaggerated the Ca 2+ imbalance by lowering mitochondrial Ca 2+ entry and increasing baseline [Ca 2+ ] cyto , further enhancing baseline Erk1/2 activation. With inhibition of mtCaMKII, PDGF treatment had no additional effect on cell proliferation. Inhibition of activated CaMKII in the cytosol decreased excessive Erk1/2 activation and reduced VSMC proliferation. Conclusions: Collectively, our results provide evidence for the molecular mechanisms of enhanced VSMC proliferation after mechanical injury by mitochondrial Ca 2+ entry in T2D.

5.
Arterioscler Thromb Vasc Biol ; 42(9): 1121-1136, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35899616

RESUMEN

BACKGROUND: Radiation therapy strongly increases the risk of atherosclerotic vascular disease, such as carotid stenosis. Radiation induces DNA damage, in particular in mitochondria, but the upstream and downstream signaling events are poorly understood. The objective of this study was to define such mechanisms. METHODS: Endothelial-specific MCU (mitochondrial Ca2+ uniporter) knockout and C57Bl6/J mice with or without a preinfusion of a mitoTEMPO (mitochondrial reactive oxygen species [ROS] scavenger) were exposed to a single dose of cranial irradiation. 24, and 240 hours postirradiation, vascular reactivity, endothelial function, and mitochondrial integrity were assessed ex vivo and in vitro. RESULTS: In cultured human endothelial cells, irradiation with 4 Gy increased cytosolic Ca2+ transients and the mitochondrial Ca2+ concentration ([Ca2+]mt) and activated MCU. These outcomes correlated with increases in mitochondrial ROS (mtROS), loss of NO production, and sustained damage to mitochondrial but not nuclear DNA. Moreover, irradiation impaired activity of the ETC (electron transport chain) and the transcription of ETC subunits encoded by mitochondrial DNA (mtDNA). Knockdown or pharmacological inhibition of MCU blocked irradiation-induced mtROS production, mtDNA damage, loss of NO production, and impairment of ETC activity. Similarly, the pretreatment with mitoTEMPO, a scavenger of mtROS, reduced irradiation-induced Ca2+ entry, and preserved both the integrity of the mtDNA and the production of NO, suggesting a feed-forward loop involving [Ca2+]m and mtROS. Enhancement of DNA repair in mitochondria, but not in the nucleus, was sufficient to block prolonged mtROS elevations and maintain NO production. Consistent with the findings from cultured cells, in C57BL/6J mice, head and neck irradiation decreased endothelium-dependent vasodilation, and mtDNA integrity in the carotid artery after irradiation. These effects were prevented by endothelial knockout of MCU or infusion with mitoTEMPO. CONCLUSIONS: Irradiation-induced damage to mtDNA is driven by MCU-dependent Ca2+ influx and the generation of mtROS. Such damage leads to reduced transcription of mitochondrial genes and activity of the ETC, promoting sustained mtROS production that induces endothelial dysfunction. Our findings suggest that targeting MCU and mtROS might be sufficient to mitigate irradiation-induced vascular disease.


Asunto(s)
Células Endoteliales , Enfermedades Vasculares , Animales , Calcio , Endotelio , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Especies Reactivas de Oxígeno
6.
Free Radic Biol Med ; 187: 204, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35662482

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Authors and Editor-in-Chief. Some of the data presented in Figure 6C, F and G of the above-titled paper were reported incorrectly in the published article. After being contacted by the Journal, the authors discovered an unintentional error in how the original data were analyzed that could affect the accuracy of the subsequent analysis. The raw data were incorrectly grouped in the analysis software, thereby altering the comparisons. Therefore the authors wish to retract the paper and will recollect and reanalyze the data appropriately. The authors apologize for any inconvenience.

7.
Free Radic Biol Med ; 188: 468, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35718632

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Authors and Editor-in-Chief. Some of the data presented in Figure 6C, F and G of the paper to which this corrigendum relates were reported incorrectly in the published article. After being contacted by the Journal, the authors discovered an unintentional error in how the original data were analyzed that could affect the accuracy of the subsequent analysis. The raw data were incorrectly grouped in the analysis software, thereby altering the comparisons. Therefore the authors wish to retract the paper and corrigendum and will recollect and reanalyze the data appropriately. The authors apologize for any inconvenience.

8.
J Am Heart Assoc ; 11(13): e025687, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35730644

RESUMEN

Background Sorbin and SH3 domain containing 2 (Sorbs2) protein is a cytoskeletal adaptor with an emerging role in cardiac biology and disease; yet, its potential relevance to adult-onset cardiomyopathies remains underexplored. Sorbs2 global knockout mice display lethal arrhythmogenic cardiomyopathy; however, the causative mechanisms remain unclear. Herein, we examine Sorbs2 dysregulation in heart failure, characterize novel Sorbs2 cardiomyocyte-specific knockout mice (Sorbs2-cKO), and explore associations between Sorbs2 genetic variations and human cardiovascular disease. Methods and Results Bioinformatic analyses show myocardial Sorbs2 mRNA is consistently upregulated in humans with adult-onset cardiomyopathies and in heart failure models. We generated Sorbs2-cKO mice and report that they develop progressive systolic dysfunction and enlarged cardiac chambers, and they die with congestive heart failure at about 1 year old. After 3 months, Sorbs2-cKO mice begin to show atrial enlargement and P-wave anomalies, without dysregulation of action potential-associated ion channel and gap junction protein expressions. After 6 months, Sorbs2-cKO mice exhibit impaired contractility in dobutamine-treated hearts and skinned myofibers, without dysregulation of contractile protein expressions. From our comprehensive survey of potential mechanisms, we found that within 4 months, Sorbs2-cKO hearts have defective microtubule polymerization and compensatory upregulation of structural cytoskeletal and adapter proteins, suggesting that this early intracellular structural remodeling is responsible for contractile dysfunction. Finally, we identified genetic variants that associate with decreased Sorbs2 expression and human cardiac phenotypes, including conduction abnormalities, atrial enlargement, and dilated cardiomyopathy, consistent with Sorbs2-cKO mice phenotypes. Conclusions Our studies show that Sorbs2 is essential for maintaining structural integrity in cardiomyocytes, likely through strengthening the interactions between microtubules and other cytoskeletal proteins at cross-link sites.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Animales , Modelos Animales de Enfermedad , Humanos , Lactante , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/genética , Dominios Homologos src
9.
J Am Heart Assoc ; 11(13): e023912, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35766269

RESUMEN

Background Sex-specific differences in vasodilation are mediated in part by differences in cytosolic Ca2+ handling, but how variations in mitochondrial Ca2+ contributes to this effect remains unknown. Here, we investigated the extent to which mitochondrial Ca2+ entry via the MCU (mitochondrial Ca2+ uniporter) drives sex differences in vasoreactivity in resistance arteries. Methods and Results Enhanced vasodilation of mesenteric resistance arteries to acetylcholine (ACh) was reduced to larger extent in female compared with male mice in 2 genetic models of endothelial MCU ablation. Ex vivo Ca2+ imaging of mesenteric arteries with Fura-2AM confirmed higher cytosolic Ca2+ transients triggered by ACh in arteries from female mice versus male mice. MCU inhibition both strongly reduced cytosolic Ca2+ transients and blocked mitochondrial Ca2+ entry. In cultured human aortic endothelial cells, treatment with physiological concentrations of estradiol enhanced cytosolic Ca2+ transients, Ca2+ buffering capacity, and mitochondrial Ca2+ entry in response to ATP or repeat Ca2+ boluses. Further experiments to establish the mechanisms underlying these effects did not reveal significant differences in the expression of MCU subunits, at either the mRNA or protein level. However, estradiol treatment was associated with an increase in mitochondrial mass, mitochondrial fusion, and the mitochondrial membrane potential and reduced mitochondrial superoxide production. Conclusions Our data confirm that mitochondrial function in endothelial cells differs by sex, with female mice having enhanced Ca2+ uptake capacity, and that these differences are attributable to the presence of more mitochondria and a higher mitochondrial membrane potential in female mice rather than differences in composition of the MCU complex.


Asunto(s)
Canales de Calcio , Calcio , Animales , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Células Endoteliales/metabolismo , Estradiol/farmacología , Femenino , Humanos , Masculino , Ratones , Mitocondrias/metabolismo , Caracteres Sexuales
12.
Free Radic Biol Med ; 146: 287-298, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31711984

RESUMEN

Damage to the microvascular endothelium is an important part of normal tissue injury after radiation exposure and driven by the production of pro-oxidants. The Ca2+/calmodulin-dependent protein kinase II is present in the mitochondrial matrix (mitoCaMKII) where it regulates Ca2+ uptake via the mitochondrial Ca2+ uniporter (MCU) and pro-oxidant production. Here, we demonstrate that radiation exposure disrupts endothelial cell barrier integrity in vitro, but can be abrogated by inhibition of mitoCaMKII, MCU, or opening of the mitochondrial transition pore. Scavenging of mitochondrial pro-oxidants with mitoTEMPO before, but not after irradiation, protected barrier function. Furthermore, markers of apoptosis and mitochondrial pro-oxidant production were elevated at 24 h following irradiation and abolished by mitoCaMKII inhibition. Endothelial barrier dysfunction was detected as early as 2 h after irradiation. Despite only mildly impaired mitochondrial respiration, the intracellular ATP levels were significantly reduced 4 h after irradiation and correlated with barrier function. MitoCaMKII inhibition improved intracellular ATP concentrations by increasing glycolysis. Finally, DNA double strand break repair and non-homologous end joining, two major drivers of ATP consumption after irradiation, were greatly increased but not significantly affected by mitoCaMKII inhibition. These findings support the hypothesis that mitoCaMKII activity is linked to mitochondrial pro-oxidant production, reduced ATP production, and loss of endothelial barrier function following irradiation. The inhibition of mitoCaMKII is a promising approach to limiting radiation-induced endothelial injury.


Asunto(s)
Canales de Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Endotelio/metabolismo , Mitocondrias/metabolismo
13.
Sci Signal ; 12(579)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040260

RESUMEN

The role of the mitochondrial Ca2+ uniporter (MCU) in physiologic cell proliferation remains to be defined. Here, we demonstrated that the MCU was required to match mitochondrial function to metabolic demands during the cell cycle. During the G1-S transition (the cycle phase with the highest mitochondrial ATP output), mitochondrial fusion, oxygen consumption, and Ca2+ uptake increased in wild-type cells but not in cells lacking MCU. In proliferating wild-type control cells, the addition of the growth factors promoted the activation of the Ca2+/calmodulin-dependent kinase II (CaMKII) and the phosphorylation of the mitochondrial fission factor Drp1 at Ser616 The lack of the MCU was associated with baseline activation of CaMKII, mitochondrial fragmentation due to increased Drp1 phosphorylation, and impaired mitochondrial respiration and glycolysis. The mitochondrial fission/fusion ratio and proliferation in MCU-deficient cells recovered after MCU restoration or inhibition of mitochondrial fragmentation or of CaMKII in the cytosol. Our data highlight a key function for the MCU in mitochondrial adaptation to the metabolic demands during cell cycle progression. Cytosolic CaMKII and the MCU participate in a regulatory circuit, whereby mitochondrial Ca2+ uptake affects cell proliferation through Drp1.


Asunto(s)
Canales de Calcio/metabolismo , Proliferación Celular/fisiología , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Dinámicas Mitocondriales/fisiología , Miocitos del Músculo Liso/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proliferación Celular/genética , Células Cultivadas , Dinaminas/metabolismo , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Masculino , Ratones Noqueados , Dinámicas Mitocondriales/genética , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Fosforilación
14.
Redox Biol ; 16: 401-413, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29649787

RESUMEN

OBJECTIVE: Reduction of oxidized methionines is emerging as a major protein repair pathway. The lack of methionine sulfoxide reductase A (MsrA) exacerbates cardiovascular disease phenotypes driven by increased oxidative stress. However, the role of MsrA on maintaining cellular homeostasis in the absence of excessive oxidative stress is less well understood. METHODS AND RESULTS: Constitutive genetic deletion of MsrA increased formation of p62-containing protein aggregates, activated autophagy, and decreased a marker of apoptosis in vascular smooth muscle cells (VSMC). The association of Keap1 with p62 was augmented in MsrA-/- VSMC. Keap1 targets the transcription factor Nrf2, which regulates antioxidant genes, for proteasomal degradation. However, in MsrA-/- VSMC, the association of Nrf2 with Keap1 was diminished. Whereas Nrf2 mRNA levels were not decreased in MsrA-/- VSMC, we detected decreased ubiquitination of Nrf2 and a corresponding increase in total Nrf2 protein in the absence of biochemical markers of oxidative stress. Moreover, nuclear-localized Nrf2 was increased under MsrA deficiency, resulting in upregulation of Nrf2-dependent transcriptional activity. Consequently, transcription, protein levels and enzymatic activity of glutamate-cysteine ligase and glutathione reductase were greatly augmented in MsrA-/- VSMC. SUMMARY: Our findings demonstrate that reversal of methionine oxidation is required for maintenance of cellular homeostasis in the absence of increased oxidative stress. These data provide the first link between autophagy and activation of Nrf2 in the setting of MsrA deletion.


Asunto(s)
Autofagia/genética , Metionina Sulfóxido Reductasas/genética , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/genética , Animales , Hidrolasas de Éster Carboxílico/genética , Regulación de la Expresión Génica/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Metionina/análogos & derivados , Metionina/biosíntesis , Metionina/genética , Metionina/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Agregado de Proteínas , ARN Mensajero , Transcripción Genética
15.
Arterioscler Thromb Vasc Biol ; 38(6): 1333-1345, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29599132

RESUMEN

OBJECTIVE: The main objective of this study is to define the mechanisms by which mitochondria control vascular smooth muscle cell (VSMC) migration and impact neointimal hyperplasia. APPROACH AND RESULTS: The multifunctional CaMKII (Ca2+/calmodulin-dependent kinase II) in the mitochondrial matrix of VSMC drove a feed-forward circuit with the mitochondrial Ca2+ uniporter (MCU) to promote matrix Ca2+ influx. MCU was necessary for the activation of mitochondrial CaMKII (mtCaMKII), whereas mtCaMKII phosphorylated MCU at the regulatory site S92 that promotes Ca2+ entry. mtCaMKII was necessary and sufficient for platelet-derived growth factor-induced mitochondrial Ca2+ uptake. This effect was dependent on MCU. mtCaMKII and MCU inhibition abrogated VSMC migration and mitochondrial translocation to the leading edge. Overexpression of wild-type MCU, but not MCU S92A, mutant in MCU-/- VSMC rescued migration and mitochondrial mobility. Inhibition of microtubule, but not of actin assembly, blocked mitochondrial mobility. The outer mitochondrial membrane GTPase Miro-1 promotes mitochondrial mobility via microtubule transport but arrests it in subcellular domains of high Ca2+ concentrations. In Miro-1-/- VSMC, mitochondrial mobility and VSMC migration were abolished, and overexpression of mtCaMKII or a CaMKII inhibitory peptide in mitochondria (mtCaMKIIN) had no effect. Consistently, inhibition of mtCaMKII increased and prolonged cytosolic Ca2+ transients. mtCaMKII inhibition diminished phosphorylation of focal adhesion kinase and myosin light chain, leading to reduced focal adhesion turnover and cytoskeletal remodeling. In a transgenic model of selective mitochondrial CaMKII inhibition in VSMC, neointimal hyperplasia was significantly reduced after vascular injury. CONCLUSIONS: These findings identify mitochondrial CaMKII as a key regulator of mitochondrial Ca2+ uptake via MCU, thereby controlling mitochondrial translocation and VSMC migration after vascular injury.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Traumatismos de las Arterias Carótidas/enzimología , Movimiento Celular , Mitocondrias Musculares/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Neointima , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Células Cultivadas , Modelos Animales de Enfermedad , Hiperplasia , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
16.
Exp Cell Res ; 362(2): 400-411, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29225050

RESUMEN

Mitochondria are increasingly recognized as key mediators of acute cellular stress responses in asthma. However, the distinct roles of regulators of mitochondrial physiology on allergic asthma phenotypes are currently unknown. The mitochondrial Ca2+ uniporter (MCU) resides in the inner mitochondrial membrane and controls mitochondrial Ca2+ uptake into the mitochondrial matrix. To understand the function of MCU in models of allergic asthma, in vitro and in vivo studies were performed using models of functional deficiency or knockout of MCU. In primary human respiratory epithelial cells, MCU inhibition abrogated mitochondrial Ca2+ uptake and reactive oxygen species (ROS) production, preserved the mitochondrial membrane potential and protected from apoptosis in response to the pleiotropic Th2 cytokine IL-13. Consequently, epithelial barrier function was maintained with MCU inhibition. Similarly, the endothelial barrier was preserved in respiratory epithelium isolated from MCU-/- mice after exposure to IL-13. In the ovalbumin-model of allergic airway disease, MCU deficiency resulted in decreased apoptosis within the large airway epithelial cells. Concordantly, expression of the tight junction protein ZO-1 was preserved, indicative of maintenance of epithelial barrier function. These data implicate mitochondrial Ca2+ uptake through MCU as a key controller of epithelial cell viability in acute allergic asthma.


Asunto(s)
Asma/genética , Canales de Calcio/genética , Calcio/metabolismo , Células Epiteliales/metabolismo , Interleucina-13/genética , Alérgenos/metabolismo , Animales , Apoptosis/genética , Asma/metabolismo , Asma/patología , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Células Epiteliales/patología , Humanos , Interleucina-13/inmunología , Potencial de la Membrana Mitocondrial/genética , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
PLoS One ; 12(10): e0186311, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29059213

RESUMEN

The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine kinase important in transducing intracellular Ca2+ signals. While in vitro data regarding the role of CaMKII in the regulation of endothelial nitric oxide synthase (eNOS) are contradictory, its role in endothelial function in vivo remains unknown. Using two novel transgenic models to express CaMKII inhibitor peptides selectively in endothelium, we examined the effect of CaMKII on eNOS activation, NO production, vasomotor tone and blood pressure. Under baseline conditions, CaMKII activation was low in the aortic wall. Consistently, systolic and diastolic blood pressure, heart rate and plasma NO levels were unaltered by endothelial CaMKII inhibition. Moreover, endothelial CaMKII inhibition had no significant effect on NO-dependent vasodilation. These results were confirmed in studies of aortic rings transduced with adenovirus expressing a CaMKII inhibitor peptide. In cultured endothelial cells, bradykinin treatment produced the anticipated rapid influx of Ca2+ and transient CaMKII and eNOS activation, whereas CaMKII inhibition blocked eNOS phosphorylation on Ser-1179 and dephosphorylation at Thr-497. Ca2+/CaM binding to eNOS and resultant NO production in vitro were decreased under CaMKII inhibition. Our results demonstrate that CaMKII plays an important role in transient bradykinin-driven eNOS activation in vitro, but does not regulate NO production, vasorelaxation or blood pressure in vivo under baseline conditions.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Animales , Línea Celular , Humanos , Fosforilación
18.
JCI Insight ; 2(3): e88297, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28194433

RESUMEN

Excessive ROS promote allergic asthma, a condition characterized by airway inflammation, eosinophilic inflammation, and increased airway hyperreactivity (AHR). The mechanisms by which airway ROS are increased and the relationship between increased airway ROS and disease phenotypes are incompletely defined. Mitochondria are an important source of cellular ROS production, and our group discovered that Ca2+/calmodulin-dependent protein kinase II (CaMKII) is present in mitochondria and activated by oxidation. Furthermore, mitochondrial-targeted antioxidant therapy reduced the severity of allergic asthma in a mouse model. Based on these findings, we developed a mouse model of CaMKII inhibition targeted to mitochondria in airway epithelium. We challenged these mice with OVA or Aspergillus fumigatus. Mitochondrial CaMKII inhibition abrogated AHR, inflammation, and eosinophilia following OVA and A. fumigatus challenge. Mitochondrial ROS were decreased after agonist stimulation in the presence of mitochondrial CaMKII inhibition. This correlated with blunted induction of NF-κB, the NLRP3 inflammasome, and eosinophilia in transgenic mice. These findings demonstrate a pivotal role for mitochondrial CaMKII in airway epithelium in mitochondrial ROS generation, eosinophilic inflammation, and AHR, providing insights into how mitochondrial ROS mediate features of allergic asthma.


Asunto(s)
Antioxidantes/administración & dosificación , Asma/tratamiento farmacológico , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Mitocondrias/enzimología , Péptidos/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/farmacología , Aspergillus fumigatus/patogenicidad , Asma/etiología , Asma/genética , Asma/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ovalbúmina/efectos adversos , Péptidos/farmacología
19.
Vascul Pharmacol ; 87: 172-179, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27658984

RESUMEN

Angiotensin-II (Ang-II) is a well-established mediator of vascular remodeling. The multifunctional calcium-calmodulin-dependent kinase II (CaMKII) is activated by Ang-II and regulates Erk1/2 and Akt-dependent signaling in cultured smooth muscle cells in vitro. Its role in Ang-II-dependent vascular remodeling in vivo is far less defined. Using a model of transgenic CaMKII inhibition selectively in smooth muscle cells, we found that CaMKII inhibition exaggerated remodeling after chronic Ang-II treatment and agonist-dependent vasoconstriction in second-order mesenteric arteries. These findings were associated with increased mRNA and protein expression of smooth muscle structural proteins. As a potential mechanism, CaMKII reduced serum response factor-dependent transcriptional activity. In summary, our findings identify CaMKII as an important regulator of smooth muscle function in Ang-II hypertension in vivo.


Asunto(s)
Angiotensina II/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Miocitos del Músculo Liso/metabolismo , Remodelación Vascular/fisiología , Animales , Femenino , Masculino , Arterias Mesentéricas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , ARN Mensajero/metabolismo , Vasoconstricción/fisiología
20.
Proc Natl Acad Sci U S A ; 112(29): 9129-34, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26153425

RESUMEN

Myocardial mitochondrial Ca(2+) entry enables physiological stress responses but in excess promotes injury and death. However, tissue-specific in vivo systems for testing the role of mitochondrial Ca(2+) are lacking. We developed a mouse model with myocardial delimited transgenic expression of a dominant negative (DN) form of the mitochondrial Ca(2+) uniporter (MCU). DN-MCU mice lack MCU-mediated mitochondrial Ca(2+) entry in myocardium, but, surprisingly, isolated perfused hearts exhibited higher O2 consumption rates (OCR) and impaired pacing induced mechanical performance compared with wild-type (WT) littermate controls. In contrast, OCR in DN-MCU-permeabilized myocardial fibers or isolated mitochondria in low Ca(2+) were not increased compared with WT, suggesting that DN-MCU expression increased OCR by enhanced energetic demands related to extramitochondrial Ca(2+) homeostasis. Consistent with this, we found that DN-MCU ventricular cardiomyocytes exhibited elevated cytoplasmic [Ca(2+)] that was partially reversed by ATP dialysis, suggesting that metabolic defects arising from loss of MCU function impaired physiological intracellular Ca(2+) homeostasis. Mitochondrial Ca(2+) overload is thought to dissipate the inner mitochondrial membrane potential (ΔΨm) and enhance formation of reactive oxygen species (ROS) as a consequence of ischemia-reperfusion injury. Our data show that DN-MCU hearts had preserved ΔΨm and reduced ROS during ischemia reperfusion but were not protected from myocardial death compared with WT. Taken together, our findings show that chronic myocardial MCU inhibition leads to previously unanticipated compensatory changes that affect cytoplasmic Ca(2+) homeostasis, reprogram transcription, increase OCR, reduce performance, and prevent anticipated therapeutic responses to ischemia-reperfusion injury.


Asunto(s)
Adaptación Fisiológica , Canales de Calcio/metabolismo , Corazón/fisiopatología , Mitocondrias Cardíacas/metabolismo , Estrés Fisiológico , Animales , Presión Sanguínea , Calcio/metabolismo , Estimulación Cardíaca Artificial , Reprogramación Celular , Citosol/efectos de los fármacos , Citosol/metabolismo , Diástole , Electrocardiografía , Genes Dominantes , Glucosa/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Reperfusión Miocárdica , Miocardio/metabolismo , Miocardio/patología , Consumo de Oxígeno , Prostaglandina-Endoperóxido Sintasas/metabolismo , Retículo Sarcoplasmático/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...