Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Leukemia ; 37(6): 1277-1286, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37095207

RESUMEN

Polycythemia vera (PV) is a hematopoietic stem cell neoplasm driven by somatic mutations in JAK2, leading to increased red blood cell (RBC) production uncoupled from mechanisms that regulate physiological erythropoiesis. At steady-state, bone marrow macrophages promote erythroid maturation, whereas splenic macrophages phagocytose aged or damaged RBCs. The binding of the anti-phagocytic ("don't eat me") CD47 ligand expressed on RBCs to the SIRPα receptor on macrophages inhibits phagocytic activity protecting RBCs from phagocytosis. In this study, we explore the role of the CD47-SIRPα interaction on the PV RBC life cycle. Our results show that blocking CD47-SIRPα in a PV mouse model due to either anti-CD47 treatment or loss of the inhibitory SIRPα-signal corrects the polycythemia phenotype. Anti-CD47 treatment marginally impacted PV RBC production while not influencing erythroid maturation. However, upon anti-CD47 treatment, high-parametric single-cell cytometry identified an increase of MerTK+ splenic monocyte-derived effector cells, which differentiate from Ly6Chi monocytes during inflammatory conditions, acquire an inflammatory phagocytic state. Furthermore, in vitro, functional assays showed that splenic JAK2 mutant macrophages were more "pro-phagocytic," suggesting that PV RBCs exploit the CD47-SIRPα interaction to escape innate immune attacks by clonal JAK2 mutant macrophages.


Asunto(s)
Policitemia Vera , Animales , Ratones , Antígeno CD47/metabolismo , Modelos Animales de Enfermedad , Macrófagos , Monocitos/metabolismo , Fagocitosis , Fenotipo , Policitemia Vera/genética , Policitemia Vera/metabolismo
2.
Semin Immunol ; 67: 101755, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36989542

RESUMEN

Our microbiota has a critical role in shaping host immunity. Microbes that reside in the gut harbor a large metabolic arsenal to aid in physiological functions of the host. Microbial metabolites, which are products of microbial metabolism, such as short chain fatty acids (SCFA), purine metabolites, cyclic dinucleotides, tryptophan derivatives, and secondary bile acids, can tailor the host immune cell landscape in homeostasis and during cancer immunotherapy. The critical role of the microbiome in aiding immune checkpoint blockade therapies has become clearer over the past few years, with the most recent studies providing more detailed mechanistic insight on how microbes and their metabolites control the outcome of immunotherapy. This review summarizes recent studies on how microbial metabolites orchestrate immune responses during cancer immunotherapies.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Inmunoterapia , Homeostasis , Neoplasias/terapia
3.
Blood ; 141(8): 886-903, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36379023

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP), also referred to as aging-related clonal hematopoiesis, is defined as an asymptomatic clonal expansion of mutant mature hematopoietic cells in ≥4% of blood leukocytes. CHIP associates with advanced age and increased risk for hematological malignancy, cardiovascular disease, and all-cause mortality. Loss-of-function somatic mutations in TET2 are frequent drivers of CHIP. However, the contribution of aging-associated cooperating cell-extrinsic drivers, like inflammation, remains underexplored. Using bone marrow (BM) transplantation and newly developed genetic mosaicism (HSC-SCL-Cre-ERT; Tet2+/flox; R26+/tm6[CAG-ZsGreen1]Hze) mouse models of Tet2+/-driven CHIP, we observed an association between increased Tet2+/- clonal expansion and higher BM levels of the inflammatory cytokine interleukin-1 (IL-1) upon aging. Administration of IL-1 to mice carrying CHIP led to an IL-1 receptor 1 (IL-1R1)-dependent expansion of Tet2+/- hematopoietic stem and progenitor cells (HSPCs) and mature blood cells. This expansion was caused by increased Tet2+/- HSPC cell cycle progression, increased multilineage differentiation, and higher repopulation capacity compared with their wild-type counterparts. In agreement, IL-1α-treated Tet2+/- hematopoietic stem cells showed increased DNA replication and repair transcriptomic signatures and reduced susceptibility to IL-1α-mediated downregulation of self-renewal genes. More important, genetic deletion of IL-1R1 in Tet2+/- HPSCs or pharmacologic inhibition of IL-1 signaling impaired Tet2+/- clonal expansion, establishing the IL-1 pathway as a relevant and therapeutically targetable driver of Tet2+/- CHIP progression during aging.


Asunto(s)
Enfermedades Cardiovasculares , Dioxigenasas , Ratones , Animales , Hematopoyesis Clonal , Hematopoyesis/genética , Enfermedades Cardiovasculares/etiología , Envejecimiento/genética , Dioxigenasas/genética , Interleucina-1/genética , Mutación , Proteínas de Unión al ADN/genética
4.
Blood Adv ; 6(15): 4485-4489, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35736667

RESUMEN

Allogeneic hematopoietic stem cell transplantation (HSCT) offers a curative treatment approach for certain benign and malignant hematologic diseases. The actual HSCT is preceded by a conditioning therapy that reduces host-vs-HSCT graft rejection and creates niche space for transplanted hematopoietic stem and progenitor cells (HSPCs). Conditioning consists of chemotherapy with or without irradiation and is a major cause of side effects in HSCT. However, reduction of the intensity of cytotoxic conditioning leads to higher rates of engraftment failure and increased rates of relapse. We here tested if the addition of an HSC cycling inducing agent during conditioning allows to diminish the dose of conditioning drugs without reducing subsequent transplanted HSC engraftment in a mouse HSCT model. The thrombopoietin receptor agonist romiplostim was shown to induce cell cycling activity in hematopoietic stem cells (HSCs). We thus tested if the addition of romiplostim to the clinically applied conditioning chemotherapy regimen cyclophosphamide and busulfan leads to increased efficacy of the chemotherapeutic regimen. We found that romiplostim not only sensitizes HSCs to chemotherapy but also enables a reduction of the main chemotherapeutic component busulfan by half while HSC engraftment levels are maintained in long-term, serial transplantation assays.


Asunto(s)
Busulfano , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Receptores Fc , Proteínas Recombinantes de Fusión , Trombopoyetina/farmacología , Trombopoyetina/uso terapéutico , Acondicionamiento Pretrasplante
6.
Blood ; 139(1): 44-58, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34525198

RESUMEN

Aging is associated with impaired hematopoietic and immune function caused in part by decreased fitness in the hematopoietic stem cell (HSC) population and an increased myeloid differentiation bias. The reasons for this aging-associated HSC impairment are incompletely understood. Here we demonstrate that older specific pathogen free (SPF) wild-type (WT) mice in contrast to young SPF mice produce more interleukin-1a and interleukin-1b (IL-1a/b) in steady-state bone marrow (BM), with most of the IL-1a/b being derived from myeloid BM cells. Furthermore, blood from steady-state older SPF WT mice contains higher levels of microbe-associated molecular patterns, specifically TLR4 and TLR8 ligands. In addition, BM myeloid cells from older mice produce more IL-1b in vitro, and older mice show higher and more durable IL-1a/b responses upon stimulation with lipopolysaccharide in vivo. To test whether HSC aging is driven by IL-1a/b, we evaluated HSCs from IL-1 receptor 1 (IL-1R1) knockout (KO) mice. Indeed, older HSCs from IL-1R1KO mice show significantly mitigated aging-associated inflammatory signatures. Moreover, HSCs from older IL-1R1KO and from germ-free mice maintain unbiased lymphomyeloid hematopoietic differentiation upon transplantation, thus resembling this functionality of young HSCs. Importantly, in vivo antibiotic suppression of microbiota or pharmacologic blockade of IL-1 signaling in older WT mice was similarly sufficient to reverse myeloid-biased output of their HSC populations. Collectively, our data define the microbiome/IL-1/IL-1R1 axis as a key, self-sustaining and also therapeutically partially reversible driver of HSC inflammaging.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Inflamación/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Microbiota , Envejecimiento , Animales , Senescencia Celular , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/microbiología , Inflamación/microbiología , Ratones , Ratones Noqueados
7.
Blood Adv ; 5(23): 5002-5015, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34581809

RESUMEN

Hematopoiesis is maintained by hematopoietic stem and progenitor cells that are located in the bone marrow (BM) where they are embedded within a complex supportive microenvironment consisting of a multitude of various non-hematopoietic and hematopoietic cell types. The BM microenvironment not only regulates steady-state hematopoiesis by provision of growth factors, cytokines, and cell-cell contact but is also an emerging key player during the adaptation to infectious and inflammatory insults (emergency hematopoiesis). Through a combination of gene expression analyses in prospectively isolated non-hematopoietic BM cell populations and various mouse models, we found that BM CXCL12-abundant reticular (CAR) cells are a major source of systemic and local BM interleukin-6 (IL-6) levels during emergency hematopoiesis after lipopolysaccharide (LPS) stimulation. Importantly, although IL-6 is dispensable during the initial phase of LPS-induced emergency hematopoiesis, it is required to sustain an adequate hematopoietic output during chronic repetitive inflammation. Our data highlight the essential role of the non-hematopoietic BM microenvironment for the sensing and integration of pathogen-derived signals into sustained demand-adapted hematopoietic responses.


Asunto(s)
Interleucina-6 , Lipopolisacáridos , Animales , Médula Ósea , Hematopoyesis , Células Madre Hematopoyéticas , Interleucina-6/genética , Lipopolisacáridos/farmacología , Ratones
8.
Stem Cell Reports ; 15(3): 566-576, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32857979

RESUMEN

Fatty acid ß-oxidation (FAO), the breakdown of lipids, is a metabolic pathway used by various stem cells. FAO levels are generally high during quiescence and downregulated with proliferation. The endogenous metabolite malonyl-CoA modulates lipid metabolism as a reversible FAO inhibitor and as a substrate for de novo lipogenesis. Here we assessed whether malonyl-CoA can be exploited to steer the behavior of hematopoietic stem/progenitor cells (HSPCs), quiescent stem cells of clinical relevance. Treatment of mouse HSPCs in vitro with malonyl-CoA increases HSPC numbers compared with nontreated controls and ameliorates blood reconstitution capacity when transplanted in vivo, mainly through enhanced lymphoid reconstitution. Similarly, human HSPC numbers also increase upon malonyl-CoA treatment in vitro. These data corroborate that lipid metabolism can be targeted to direct cell fate and stem cell proliferation. Physiological modulation of metabolic pathways, rather than genetic or pharmacological inhibition, provides unique perspectives for stem cell manipulations in health and disease.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Metabolismo de los Lípidos , Linfocitos/citología , Metaboloma , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular/genética , Células Cultivadas , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética , Linfocitos/metabolismo , Malonil Coenzima A/metabolismo , Metaboloma/genética , Ratones Endogámicos C57BL , Oxidación-Reducción
10.
Cell Stem Cell ; 21(2): 225-240.e5, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28736216

RESUMEN

Bacterial infection leads to consumption of short-lived innate immune effector cells, which then need to be replenished from hematopoietic stem and progenitor cells (HSPCs). HSPCs express pattern recognition receptors, such as Toll-like receptors (TLRs), and ligation of these receptors induces HSPC mobilization, cytokine production, and myeloid differentiation. The underlying mechanisms involved in pathogen signal transduction in HSCs and the resulting biological consequences remain poorly defined. Here, we show that in vivo lipopolysaccharide (LPS) application induces proliferation of dormant HSCs directly via TLR4 and that sustained LPS exposure impairs HSC self-renewal and competitive repopulation activity. This process is mediated via TLR4-TRIF-ROS-p38, but not MyD88 signaling, and can be inhibited pharmacologically without preventing emergency granulopoiesis. Live Salmonella Typhimurium infection similarly induces proliferative stress in HSCs, in part via TLR4-TRIF signals. Thus, while direct TLR4 activation in HSCs might be beneficial for controlling systemic infection, prolonged TLR4 signaling has detrimental effects and may contribute to inflammation-associated HSPC dysfunction.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Células Madre Hematopoyéticas/metabolismo , Inmunidad Innata , Salmonella typhimurium/fisiología , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , ADN/metabolismo , Activación Enzimática/efectos de los fármacos , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salmonella typhimurium/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Front Immunol ; 7: 502, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27895645

RESUMEN

All hematopoietic and immune cells are continuously generated by hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) through highly organized process of stepwise lineage commitment. In the steady state, HSCs are mostly quiescent, while HPCs are actively proliferating and contributing to daily hematopoiesis. In response to hematopoietic challenges, e.g., life-threatening blood loss, infection, and inflammation, HSCs can be activated to proliferate and engage in blood formation. The HSC activation induced by hematopoietic demand is mediated by direct or indirect sensing mechanisms involving pattern recognition receptors or cytokine/chemokine receptors. In contrast to the hematopoietic challenges with obvious clinical symptoms, how the aging process, which involves low-grade chronic inflammation, impacts hematopoiesis remains undefined. Herein, we summarize recent findings pertaining to functional alternations of hematopoiesis, HSCs, and the bone marrow (BM) microenvironment during the processes of aging and inflammation and highlight some common cellular and molecular changes during the processes that influence hematopoiesis and its cells of origin, HSCs and HPCs, as well as the BM microenvironment. We also discuss how age-dependent alterations of the immune system lead to subclinical inflammatory states and how inflammatory signaling might be involved in hematopoietic aging. Our aim is to present evidence supporting the concept of "Inflamm-Aging," or inflammation-associated aging of hematopoiesis.

12.
Blood ; 128(17): 2130-2134, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27581357

RESUMEN

Favorable-risk human acute myeloid leukemia (AML) engrafts poorly in currently used immunodeficient mice, possibly because of insufficient environmental support of these leukemic entities. To address this limitation, we here transplanted primary human AML with isolated nucleophosmin (NPM1) mutation and AML with inv(16) in mice in which human versions of genes encoding cytokines important for myelopoiesis (macrophage colony-stimulating factor [M-CSF], interleukin-3, granulocyte-macrophage colony-stimulating factor, and thrombopoietin) were knocked into their respective mouse loci. NPM1mut AML engrafted with higher efficacy in cytokine knock-in (KI) mice and showed a trend toward higher bone marrow engraftment levels in comparison with NSG mice. inv(16) AML engrafted with high efficacy and was serially transplantable in cytokine KI mice but, in contrast, exhibited virtually no engraftment in NSG mice. Selected use of cytokine KI mice revealed that human M-CSF was required for inv(16) AML engraftment. Subsequent transcriptome profiling in an independent AML patient study cohort demonstrated high expression of M-CSF receptor and enrichment of M-CSF inducible genes in inv(16) AML cases. This study thus provides a first xenotransplantation mouse model for and informs on the disease biology of inv(16) AML.


Asunto(s)
Modelos Animales de Enfermedad , Leucemia Mieloide Aguda , Trasplante de Neoplasias/métodos , Trasplante Heterólogo/métodos , Animales , Aberraciones Cromosómicas , Cromosomas Humanos Par 16/genética , Citocinas , Técnicas de Sustitución del Gen , Xenoinjertos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Mutación , Proteínas Nucleares/genética , Nucleofosmina
13.
Blood ; 127(25): 3175-9, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27146433

RESUMEN

In steady-state adult hematopoiesis, most hematopoietic stem cells (HSCs) are in the resting phase of the cell cycle. Upon enhanced hematopoietic demand, HSCs can be induced to divide and self-renew or differentiate. However, the cell-extrinsic signals inducing HSC cycling remain to be elucidated. Using in vivo high-resolution single HSC divisional tracking, we directly demonstrate that clinically applied thrombopoietin receptor but not granulocyte colony-stimulating factor (G-CSF) receptor agonists drive HSCs into self-renewing divisions leading to quantitative expansion of functional HSC as defined by their in vivo serial multilineage and long-term repopulating potential. These results suggest that thrombopoietin mimetics might be applicable to expand HSCs in vivo and to sensitize thrombopoietin receptor-expressing HSCs to cell cycle-dependent cytotoxic agents.


Asunto(s)
División Celular/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Receptores de Factor Estimulante de Colonias de Granulocito/agonistas , Receptores de Trombopoyetina/agonistas , Trombopoyetina/farmacología , Animales , Bencilaminas , Células Cultivadas , Ciclamas , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Compuestos Heterocíclicos/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Fc , Proteínas Recombinantes de Fusión/farmacología
14.
Nat Cell Biol ; 18(6): 607-18, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27111842

RESUMEN

Haematopoietic stem cells (HSCs) maintain lifelong blood production and increase blood cell numbers in response to chronic and acute injury. However, the mechanism(s) by which inflammatory insults are communicated to HSCs and their consequences for HSC activity remain largely unknown. Here, we demonstrate that interleukin-1 (IL-1), which functions as a key pro-inflammatory 'emergency' signal, directly accelerates cell division and myeloid differentiation of HSCs through precocious activation of a PU.1-dependent gene program. Although this effect is essential for rapid myeloid recovery following acute injury to the bone marrow, chronic IL-1 exposure restricts HSC lineage output, severely erodes HSC self-renewal capacity, and primes IL-1-exposed HSCs to fail massive replicative challenges such as transplantation. Importantly, these damaging effects are transient and fully reversible on IL-1 withdrawal. Our results identify a critical regulatory circuit that tailors HSC responses to acute needs, and is likely to underlie deregulated blood homeostasis in chronic inflammation conditions.


Asunto(s)
Médula Ósea/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Interleucina-1/farmacología , Animales , Trasplante de Médula Ósea , División Celular/efectos de los fármacos , Linaje de la Célula/genética , Células Madre Hematopoyéticas/citología , Ratones
15.
J Immunol ; 193(10): 5273-83, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25305320

RESUMEN

Neutropenia is probably the strongest known predisposition to infection with otherwise harmless environmental or microbiota-derived species. Because initial swarming of neutrophils at the site of infection occurs within minutes, rather than the hours required to induce "emergency granulopoiesis," the relevance of having high numbers of these cells available at any one time is obvious. We observed that germ-free (GF) animals show delayed clearance of an apathogenic bacterium after systemic challenge. In this article, we show that the size of the bone marrow myeloid cell pool correlates strongly with the complexity of the intestinal microbiota. The effect of colonization can be recapitulated by transferring sterile heat-treated serum from colonized mice into GF wild-type mice. TLR signaling was essential for microbiota-driven myelopoiesis, as microbiota colonization or transferring serum from colonized animals had no effect in GF MyD88(-/-)TICAM1(-/-) mice. Amplification of myelopoiesis occurred in the absence of microbiota-specific IgG production. Thus, very low concentrations of microbial Ags and TLR ligands, well below the threshold required for induction of adaptive immunity, sets the bone marrow myeloid cell pool size. Coevolution of mammals with their microbiota has probably led to a reliance on microbiota-derived signals to provide tonic stimulation to the systemic innate immune system and to maintain vigilance to infection. This suggests that microbiota changes observed in dysbiosis, obesity, or antibiotic therapy may affect the cross talk between hematopoiesis and the microbiota, potentially exacerbating inflammatory or infectious states in the host.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Antígenos Bacterianos/inmunología , Microbiota/inmunología , Células Mieloides/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Mielopoyesis/inmunología , Transducción de Señal/inmunología , Inmunidad Adaptativa , Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Evolución Biológica , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/microbiología , Regulación de la Expresión Génica , Vida Libre de Gérmenes , Inmunidad Innata , Intestinos/inmunología , Intestinos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/microbiología , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Mielopoyesis/genética
16.
BMC Cancer ; 14: 338, 2014 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-24886485

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with limited therapeutic options. Since HCC has been shown to be immunogenic, immunotherapy is considered a promising therapeutic approach. Small interfering RNAs (siRNAs), depending on their structure and sequence, can trigger the innate immune system, which can potentially enhance the adaptive anticancer immune response in the tumor-bearing subjects. Immunostimulatory properties of nucleic acids can be applied to develop adjuvants for HCC treatment. METHODS: The transplantable HCC G-29 tumor in male CBA/LacSto (CBA) mice was used to study the effects of immunostimulatory RNA on tumor growth. Tumor size, metastases area in different organs of mice and mouse survival rate were analyzed. Furthermore the mouse serum IFN-α levels were measured using ELISA. RESULTS: In the present study, we found that a 19-bp RNA duplex (ImmunoStimulattory RNA or isRNA) with 3-nt overhangs at the 3'-ends of specific sequence displays immunostimulatory, antitumor, and antimetastatic activities in mice bearing HCC G-29. Our results demonstrate that isRNA strongly increases the level of interferon-α (IFN-α) by up to 25-fold relative to the level in mice injected with Lipofectamine alone (Mock), and to a lesser extent increases the level of proinflammatory cytokine interleukin-6 (IL-6) (by up to 5.5-fold relative to the Mock level), in mice blood serum. We showed that isRNA reliably (P < 0.05) inhibits primary tumor growth in mice compared to the mock group. Furthermore, injections of isRNA significantly enhanced necrotic processes in the center of the primary tumor, and decreased by twofold the width of the undifferentiated peripheral zone and the number of mitotic cells in this zone. The results showed that isRNA efficiently reduces the area of metastases in the liver, kidneys, and heart of CBA/LacSto mice with HCC. CONCLUSIONS: The obtained results clearly demonstrate immunostimulatory and antimetastatic properties of the isRNAs in mice with HCC. Consequently, this short double-stranded RNA can be considered as a potential adjuvant for the therapy of HCC.


Asunto(s)
Carcinoma Hepatocelular/terapia , Inmunidad Innata/genética , Inmunoterapia/métodos , Inductores de Interferón/administración & dosificación , Neoplasias Hepáticas/terapia , ARN Bicatenario/administración & dosificación , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/secundario , Interferón-alfa/sangre , Interleucina-6/sangre , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos CBA , Mitosis , Necrosis , Factores de Tiempo , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA