Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 26(5): e16627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733112

RESUMEN

Soil structure and aggregation are crucial for soil functionality, particularly under drought conditions. Saprobic soil fungi, known for their resilience in low moisture conditions, are recognized for their influence on soil aggregate dynamics. In this study, we explored the potential of fungal amendments to enhance soil aggregation and hydrological properties across different moisture regimes. We used a selection of 29 fungal isolates, recovered from soils treated under drought conditions and varying in colony density and growth rate, for single-strain inoculation into sterilized soil microcosms under either low or high moisture (≤-0.96 and -0.03 MPa, respectively). After 8 weeks, we assessed soil aggregate formation and stability, along with soil properties such as soil water content, water hydrophobicity, sorptivity, total fungal biomass and water potential. Our findings indicate that fungal inoculation altered soil hydrological properties and improved soil aggregation, with effects varying based on the fungal strains and soil moisture levels. We found a positive correlation between fungal biomass and enhanced soil aggregate formation and stabilization, achieved by connecting soil particles via hyphae and modifying soil aggregate sorptivity. The improvement in soil water potential was observed only when the initial moisture level was not critical for fungal activity. Overall, our results highlight the potential of using fungal inoculation to improve the structure of agricultural soil under drought conditions, thereby introducing new possibilities for soil management in the context of climate change.


Asunto(s)
Hongos , Microbiología del Suelo , Suelo , Agua , Suelo/química , Hongos/crecimiento & desarrollo , Agua/química , Biomasa , Sequías
2.
Sci Total Environ ; 930: 172639, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38670365

RESUMEN

Drained peatlands in temperate climates are under threat from climate change and human activities. The resulting decomposition of organic matter plays a major role in regulating the associated land subsidence rates, yet the determinants of aerobic and anaerobic peat decomposition rates are not fully understood. In this study, we sought to gain insight into the drivers of decomposition rates in botanically diverse peatlands (sedge, reed, wood, and moss dominant) under oxic and anoxic conditions. Peat samples were collected from the anoxic zone and incubated for 24 h (short) and 15 weeks (long) under either oxic or anoxic conditions. CO2 emissions, hydrolytic and oxidative exoenzyme potential activities, phenolic compound concentrations, and several edaphic factors were measured at the end of each incubation period. We found that 15 weeks of oxygen exposure of anoxic peat samples accelerated the average CO2 emissions by 3.9-fold. Reed and sedge peat respired more than wood and moss peat under anoxic conditions. Interestingly, CO2 emissions from anoxic peat layers under permanently anoxic conditions were substantial and given the thickness of peat deposits in the field, such activities may play an important role in long-term land subsidence rates and total CO2 emissions from drained peatlands. The results from the long-term incubations showed that decomposition rates appear to be also controlled by factors other than oxygen intrusion such as substrate availability. In summary, the botanical composition of the peat matrix, incubation conditions and time of incubation are all important factors that need to be considered when predicting peat decomposition and subsequent land subsidence rates.


Asunto(s)
Suelo , Suelo/química , Anaerobiosis , Humedales , Aerobiosis , Monitoreo del Ambiente , Cambio Climático , Dióxido de Carbono/análisis
3.
Nat Ecol Evol ; 8(3): 392-399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38195997

RESUMEN

Overyielding, the high productivity of multispecies plant communities, is commonly seen as the result of plant genetic diversity. Here we demonstrate that biodiversity-ecosystem functioning relationships can emerge in clonal plant populations through interaction with microorganisms. Using a model clonal plant species, we found that exposure to volatiles of certain microorganisms led to divergent plant phenotypes. Assembling communities out of plants associated with different microorganisms led to transgressive overyielding in both biomass and seed yield. Our results highlight the importance of belowground microbial diversity in plant biodiversity research and open new avenues for precision ecosystem management.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Plantas , Dinámica Poblacional
4.
Nat Commun ; 15(1): 829, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280866

RESUMEN

Soil organisms are affected by the presence of predatory protists. However, it remains poorly understood how predatory protists can affect plant disease incidence and how fertilization regimes can affect these interactions. Here, we characterise the rhizosphere bacteria, fungi and protists over eleven growing seasons of tomato planting under three fertilization regimes, i.e conventional, organic and bioorganic, and with different bacterial wilt disease incidence levels. We find that predatory protists are negatively associated with disease incidence, especially two ciliophoran Colpoda OTUs, and that bioorganic fertilization enhances the abundance of predatory protists. In glasshouse experiments we find that the predatory protist Colpoda influences disease incidence by directly consuming pathogens and indirectly increasing the presence of pathogen-suppressive microorganisms in the soil. Together, we demonstrate that predatory protists reduce bacterial wilt disease incidence in tomato plants via direct and indirect reductions of pathogens. Our study provides insights on the role that predatory protists play in plant disease, which could be used to design more sustainable agricultural practices.


Asunto(s)
Solanum lycopersicum , Incidencia , Microbiología del Suelo , Eucariontes , Bacterias , Suelo
5.
Environ Microbiol ; 25(12): 3623-3629, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37849426

RESUMEN

The assembly of bacterial communities in the rhizosphere is well-documented and plays a crucial role in supporting plant performance. However, we have limited knowledge of how plant rhizosphere determines the assembly of protistan predators and whether the potential associations between protistan predators and bacterial communities shift due to rhizosphere selection. To address this, we examined bacterial and protistan taxa from 443 agricultural soil samples including bulk and rhizosphere soils. Our results presented distinct patterns of bacteria and protistan predators in rhizosphere microbiome assembly. Community assembly of protistan predators was determined by a stochastic process in the rhizosphere and the diversity of protistan predators was reduced in the rhizosphere compared to bulk soils, these may be attributed to the indirect impacts from the altered bacterial communities that showed deterministic process assembly in the rhizosphere. Interestingly, we observed that the plant rhizosphere facilitates more close interrelationships between protistan predators and bacterial communities, which might promote a healthy rhizosphere microbial community for plant growth. Overall, our findings indicate that the potential predator-prey relationships within the microbiome, mediated by plant rhizosphere, might contribute to plant performance in agricultural ecosystems.


Asunto(s)
Microbiota , Rizosfera , Microbiología del Suelo , Raíces de Plantas/microbiología , Bacterias/genética , Suelo , Plantas
6.
ISME Commun ; 3(1): 104, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752280

RESUMEN

Soil aggregates contain distinct physio-chemical properties across different size classes. These differences in micro-habitats support varied microbial communities and modulate the effect of plant on microbiome, which affect soil functions such as disease suppression. However, little is known about how the residents of different soil aggregate size classes are impacted by plants throughout their growth stages. Here, we examined how tomato plants impact soil aggregation and bacterial communities within different soil aggregate size classes. Moreover, we investigated whether aggregate size impacts the distribution of soil pathogen and their potential inhibitors. We collected samples from different tomato growth stages: before-planting, seedling, flowering, and fruiting stage. We measured bacterial density, community composition, and pathogen abundance using qPCR and 16 S rRNA gene sequencing. We found the development of tomato growth stages negatively impacted root-adhering soil aggregation, with a gradual decrease of large macro-aggregates (1-2 mm) and an increase of micro-aggregates (<0.25 mm). Additionally, changes in bacterial density and community composition varied across soil aggregate size classes. Furthermore, the pathogen exhibited a preference to micro-aggregates, while macro-aggregates hold a higher abundance of potential pathogen-inhibiting taxa and predicted antibiotic-associated genes. Our results indicate that the impacts of tomatoes on soil differ for different soil aggregate size classes throughout different plant growth stages, and plant pathogens and their potential inhibitors have different habitats within soil aggregate size classes. These findings highlight the importance of fine-scale heterogeneity of soil aggregate size classes in research on microbial ecology and agricultural sustainability, further research focuses on soil aggregates level could help identify candidate tax involved in suppressing pathogens in the virtual micro-habitats.

7.
Nat Commun ; 14(1): 4497, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495619

RESUMEN

Prebiotics are compounds that selectively stimulate the growth and activity of beneficial microorganisms. The use of prebiotics is a well-established strategy for managing human gut health. This concept can also be extended to plants where plant rhizosphere microbiomes can improve the nutrient acquisition and disease resistance. However, we lack effective strategies for choosing metabolites to elicit the desired impacts on plant health. In this study, we target the rhizosphere of tomato (Solanum lycopersicum) suffering from wilt disease (caused by Ralstonia solanacearum) as source for potential prebiotic metabolites. We identify metabolites (ribose, lactic acid, xylose, mannose, maltose, gluconolactone, and ribitol) exclusively used by soil commensal bacteria (not positively correlated with R. solanacearum) but not efficiently used by the pathogen in vitro. Metabolites application in the soil with 1 µmol g-1 soil effectively protects tomato and other Solanaceae crops, pepper (Capsicum annuum) and eggplant (Solanum melongena), from pathogen invasion. After adding prebiotics, the rhizosphere soil microbiome exhibits enrichment of pathways related to carbon metabolism and autotoxin degradation, which were driven by commensal microbes. Collectively, we propose a novel pathway for mining metabolites from the rhizosphere soil and their use as prebiotics to help control soil-borne bacterial wilt diseases.


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Solanum melongena , Humanos , Prebióticos , Rizosfera , Suelo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Bacterias , Ralstonia solanacearum/metabolismo
8.
ISME J ; 17(6): 931-942, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37037925

RESUMEN

Beneficial interactions between plants and rhizosphere microorganisms are key determinants of plant health with the potential to enhance the sustainability of agricultural practices. However, pinpointing the mechanisms that determine plant disease protection is often difficult due to the complexity of microbial and plant-microbe interactions and their links with the plant's own defense systems. Here, we found that the resistance level of different banana varieties was correlated with the plant's ability to stimulate specific fungal taxa in the rhizosphere that are able to inhibit the Foc TR4 pathogen. These fungal taxa included members of the genera Trichoderma and Penicillium, and their growth was stimulated by plant exudates such as shikimic acid, D-(-)-ribofuranose, and propylene glycol. Furthermore, amending soils with these metabolites enhanced the resistance of a susceptible variety to Foc TR4, with no effect observed for the resistant variety. In total, our findings suggest that the ability to recruit pathogen-suppressive fungal taxa may be an important component in determining the level of pathogen resistance exhibited by plant varieties. This perspective opens up new avenues for improving plant health, in which both plant and associated microbial properties are considered.


Asunto(s)
Agricultura , Rizosfera , Suelo , Hongos/genética , Raíces de Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Microbiología del Suelo
9.
ISME J ; 17(7): 950-951, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37045987
10.
New Phytol ; 238(3): 1198-1214, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740577

RESUMEN

Host-associated fungi can help protect plants from pathogens, and empirical evidence suggests that such microorganisms can be manipulated by introducing probiotic to increase disease suppression. However, we still generally lack the mechanistic knowledge of what determines the success of probiotic application, hampering the development of reliable disease suppression strategies. We conducted a three-season consecutive microcosm experiment in which we amended banana Fusarium wilt disease-conducive soil with Trichoderma-amended biofertilizer or lacking this inoculum. High-throughput sequencing was complemented with cultivation-based methods to follow changes in fungal microbiome and explore potential links with plant health. Trichoderma application increased banana biomass by decreasing disease incidence by up to 72%, and this effect was attributed to changes in fungal microbiome, including the reduction in Fusarium oxysporum density and enrichment of pathogen-suppressing fungi (Humicola). These changes were accompanied by an expansion in microbial carbon resource utilization potential, features that contribute to disease suppression. We further demonstrated the disease suppression actions of Trichoderma-Humicola consortia, and results suggest niche overlap with pathogen and induction of plant systemic resistance may be mechanisms driving the observed biocontrol effects. Together, we demonstrate that fungal inoculants can modify the composition and functioning of the resident soil fungal microbiome to suppress soilborne disease.


Asunto(s)
Fusarium , Musa , Trichoderma , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Suelo , Musa/microbiología
11.
Research (Wash D C) ; 2022: 9818073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204250

RESUMEN

Microbial contributions to natural soil suppressiveness have been reported for a range of plant pathogens and cropping systems. To disentangle the mechanisms underlying suppression of banana Panama disease caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc4), we used amplicon sequencing to analyze the composition of the soil microbiome from six separate locations, each comprised of paired orchards, one potentially suppressive and one conducive to the disease. Functional potentials of the microbiomes from one site were further examined by shotgun metagenomic sequencing after soil suppressiveness was confirmed by greenhouse experiments. Potential key antagonists involved in disease suppression were also isolated, and their activities were validated by a combination of microcosm and pot experiments. We found that potentially suppressive soils shared a common core community with relatively low levels of F. oxysporum and relatively high proportions of Myxococcales, Pseudomonadales, and Xanthomonadales, with five genera, Anaeromyxobacter, Kofleria, Plesiocystis, Pseudomonas, and Rhodanobacter being significantly enriched. Further, Pseudomonas was identified as a potential key taxon linked to pathogen suppression. Metagenomic analysis showed that, compared to the conducive soil, the microbiome in the disease suppressive soil displayed a significantly greater incidence of genes related to quorum sensing, biofilm formation, and synthesis of antimicrobial compounds potentially active against Foc4. We also recovered a higher frequency of antagonistic Pseudomonas isolates from disease suppressive experimental field sites, and their protective effects against banana Fusarium wilt disease were demonstrated under greenhouse conditions. Despite differences in location and soil conditions, separately located suppressive soils shared common characteristics, including enrichment of Myxococcales, Pseudomonadales, and Xanthomonadales, and enrichment of specific Pseudomonas populations with antagonistic activity against the pathogen. Moreover, changes in functional capacity toward an increase in quorum sensing, biofilm formation, and antimicrobial compound synthesizing involve in disease suppression.

12.
Environ Microbiol ; 24(12): 5680-5689, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36053873

RESUMEN

Microbial interactions within resident communities are a major determinant of resistance to pathogen invasion. Yet, interactions vary with environmental conditions, raising the question of how community composition and environments interactively shape invasion resistance. Here, we use resource availability (RA) as a model parameter altering the resistance of model bacterial communities to invasion by the plant pathogenic bacterium Ralstonia solanacearum. We found that at high RA, interactions between resident bacterial species were mainly driven by the direct antagonism, in terms of the means of invader inhibition. Consequently, the competitive resident communities with a higher production of antibacterial were invaded to a lesser degree than facilitative communities. At low RA, bacteria produced little direct antagonist potential, but facilitative communities reached a relatively higher community productivity, which showed higher resistance to pathogen invasion than competitive communities with lower productivities. This framework may lay the basis to understand complex microbial interactions and biological invasion as modulated by the dynamic changes of environmental resource availability.


Asunto(s)
Bacterias , Ralstonia solanacearum , Bacterias/genética , Plantas , Interacciones Microbianas
13.
NPJ Biofilms Microbiomes ; 8(1): 57, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35831320

RESUMEN

Application of plant growth-promoting microbes (PGPMs) can contribute to sustainable agricultural ecosystems. From a three-year field experiment, we already found that the addition of Trichoderma bio-organic fertilizer (BF) significantly improved crop growth and yield compared to the application of organic fertilizer (OF). Here, we tracked the responses of soil bacterial and fungal communities to these treatments to find the key soil microbial taxa that contribute to the crop yield enhancement. We also examined if bacterial and fungal suspensions from resulting soils could improve plant growth upon inoculation into sterilized soil. Lastly, we isolated a number of fungal strains related to populations affected by treatments to examine their role in plant growth promotion. Results showed that consecutive application of BF impacted soil fungal communities, and the biological nature of plant growth promotion was confirmed via pot experiments using γ-sterilized versus none-sterilized soils collected from the field. Soil slurry experiments suggested that fungal, but not bacterial communities, played an important role in plant growth promotion, consistent with the results of our field experimental data. Fungal community analysis of both field and slurry experimental soils revealed increases in specific resident Aspergillus spp. Interestingly, Aspergillus tamarii showed no plant growth promotion by itself, but strongly increased the growth promotion activity of the Trichoderma amendment strain upon their co-inoculation. The effectiveness of the fungal amendment appears to stem not only from its own action, but also from synergetic interactions with resident fungal populations activated upon biofertilizer application.


Asunto(s)
Suelo , Trichoderma , Aspergillus , Bacterias , Ecosistema , Fertilizantes , Microbiología del Suelo
14.
FEMS Microbiol Ecol ; 98(6)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35524686

RESUMEN

Predatory protists are major consumers of soil micro-organisms. By selectively feeding on their prey, they can shape soil microbiome composition and functions. While different protists are known to show diverging impacts, it remains impossible to predict a priori the effect of a given species. Various protist traits including phylogenetic distance, growth rate and volume have been previously linked to the predatory impact of protists. Closely related protists, however, also showed distinct prey choices which could mirror specificity in their dietary niche. We, therefore, aimed to estimate the dietary niche breadth and overlap of eight protist isolates on 20 bacterial species in plate assays. To assess the informative value of previously suggested and newly proposed (feeding-related) protist traits, we related them to the impacts of predation of each protist on a protist-free soil bacterial community in a soil microcosm via 16S rRNA gene amplicon sequencing. We could demonstrate that each protist showed a distinct feeding pattern in vitro. Further, the assayed protist feeding patterns and growth rates correlated well with the observed predatory impacts on the structure of soil bacterial communities. We thus conclude that in vitro screening has the potential to inform on the specific predatory impact of selected protists.


Asunto(s)
Conducta Predatoria , Suelo , Animales , Bacterias/genética , Eucariontes/genética , Conducta Alimentaria , Filogenia , ARN Ribosómico 16S/genética
15.
ISME J ; 16(8): 1932-1943, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35461357

RESUMEN

Plant health is strongly impacted by beneficial and pathogenic plant microbes, which are themselves structured by resource inputs. Organic fertilizer inputs may thus offer a means of steering soil-borne microbes, thereby affecting plant health. Concurrently, soil microbes are subject to top-down control by predators, particularly protists. However, little is known regarding the impact of microbiome predators on plant health-influencing microbes and the interactive links to plant health. Here, we aimed to decipher the importance of predator-prey interactions in influencing plant health. To achieve this goal, we investigated soil and root-associated microbiomes (bacteria, fungi and protists) over nine years of banana planting under conventional and organic fertilization regimes differing in Fusarium wilt disease incidence. We found that the reduced disease incidence and improved yield associated with organic fertilization could be best explained by higher abundances of protists and pathogen-suppressive bacteria (e.g. Bacillus spp.). The pathogen-suppressive actions of predatory protists and Bacillus spp. were mainly determined by their interactions that increased the relative abundance of secondary metabolite Q genes (e.g. nonribosomal peptide synthetase gene) within the microbiome. In a subsequent microcosm assay, we tested the interactions between predatory protists and pathogen-suppressive Bacillus spp. that showed strong improvements in plant defense. Our study shows how protistan predators stimulate disease-suppressive bacteria in the plant microbiome, ultimately enhancing plant health and yield. Thus, we suggest a new biological model useful for improving sustainable agricultural practices that is based on complex interactions between different domains of life.


Asunto(s)
Eucariontes , Microbiología del Suelo , Bacterias/genética , Eucariontes/genética , Hongos/genética , Enfermedades de las Plantas/microbiología , Suelo/química
16.
Protist ; 173(3): 125870, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35489252

RESUMEN

Heterolobosea is one of the major protist groups in soils. While an increasing number of soil heterolobosean species has been described, we have likely only scratched the surface of heterolobosean diversity in soils. Here, we expand this knowledge by morphologically and molecularly classifying four novel strains. One was identified as Naegleria clarki, while the remaining three strains had no identical Blast hit against GenBank and could only be reliably identified to the genus level: two strains as Allovahlkampfia spp. and one strain as Vahlkampfia sp. One Allovahlkampfia strain was most closely affiliated with Allovahlkampfia sp. Nl64 and the other strain was affiliated with 'Solumitrus' palustris, which is now named Allovahlkampfia palustris comb.nov. As there are only two valid species described within Allovahlkampfia, we combined all published sequences related to Allovahlkampfia and propose five new groups within this genus. The last strain was most closely related, but clearly distinct from, Vahlkampfia orchilla, based on DNA barcoding. As such, we propose this amoeba as a new species named Vahlkampfia bulbosis n.sp. Together, our study extends the described diversity of soil heteroloboseans through the description of a new Vahlkampfia species and by revising the morphologically and phylogenetically diverse genus Allovahlkampfia.


Asunto(s)
Amoeba , Naegleria , ADN Bacteriano/genética , Naegleria/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo
17.
Environ Microbiol ; 24(8): 3625-3639, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35229433

RESUMEN

Dead wood quantity and quality is important for forest biodiversity, by determining wood-inhabiting fungal assemblages. We therefore evaluated how fungal communities were regulated by stem traits and compartments (i.e. bark, outer- and inner wood) of 14 common temperate tree species. Fresh logs were incubated in a common garden experiment in a forest site in the Netherlands. After 1 and 4 years of decay, the fungal composition of different compartments was assessed using Internal Transcribed Spacer amplicon sequencing. We found that fungal alpha diversity differed significantly across tree species and stem compartments, with bark showing significantly higher fungal diversity than wood. Gymnosperms and Angiosperms hold different fungal communities, and distinct fungi were found between inner wood and other compartments. Stem traits showed significant afterlife effects on fungal communities; traits associated with accessibility (e.g. conduit diameter), stem chemistry (e.g. C, N, lignin) and physical defence (e.g. density) were important factors shaping fungal community structure in decaying stems. Overall, stem traits vary substantially across stem compartments and tree species, thus regulating fungal communities and the long-term carbon dynamics of dead trees.


Asunto(s)
Micobioma , Árboles , Biodiversidad , Bosques , Hongos/genética , Micobioma/genética , Árboles/microbiología , Madera/microbiología
18.
ISME J ; 16(3): 868-875, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34671104

RESUMEN

The rhizosphere microbiome forms a first line of defense against soilborne pathogens. To date, most microbiome enhancement strategies have relied on bioaugmentation with antagonistic microorganisms that directly inhibit pathogens. Previous studies have shown that some root-associated bacteria are able to facilitate pathogen growth. We therefore hypothesized that inhibiting such pathogen helpers may help reduce pathogen densities. We examined tripartite interactions between a model pathogen, Ralstonia solanacearum, two model helper strains and a collection of 46 bacterial isolates recovered from the tomato rhizosphere. This system allowed us to examine the importance of direct (effects of rhizobacteria on pathogen growth) and indirect (effects of rhizobacteria on helper growth) pathways affecting pathogen growth. We found that the interaction between rhizosphere isolates and the helper strains was the major determinant of pathogen suppression both in vitro and in vivo. We therefore propose that controlling microbiome composition to prevent the growth of pathogen helpers may become part of sustainable strategies for pathogen control.


Asunto(s)
Microbiota , Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Ralstonia solanacearum/fisiología , Rizosfera
19.
Proc Biol Sci ; 288(1960): 20211396, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34641724

RESUMEN

Plant growth depends on a range of functions provided by their associated rhizosphere microbiome, including nutrient mineralization, hormone co-regulation and pathogen suppression. Improving the ability of plant-associated microbiomes to deliver these functions is thus important for developing robust and sustainable crop production. However, it is yet unclear how beneficial effects of probiotic microbial inoculants can be optimized and how their effects are mediated. Here, we sought to enhance tomato plant growth by targeted introduction of probiotic bacterial consortia consisting of up to eight plant-associated Pseudomonas strains. We found that the effect of probiotic consortium inoculation was richness-dependent: consortia that contained more Pseudomonas strains reached higher densities in the tomato rhizosphere and had clearer beneficial effects on multiple plant growth characteristics. Crucially, these effects were best explained by changes in the resident community diversity, composition and increase in the relative abundance of initially rare taxa, instead of introduction of plant-beneficial traits into the existing community along with probiotic consortia. Together, our results suggest that beneficial effects of microbial introductions can be driven indirectly through effects on the diversity and composition of the resident plant rhizosphere microbiome.


Asunto(s)
Microbiota , Probióticos , Bacterias , Raíces de Plantas , Rizosfera , Microbiología del Suelo
20.
Microbiome ; 9(1): 64, 2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-33743825

RESUMEN

BACKGROUND: Microbiomes play vital roles in plant health and performance, and the development of plant beneficial microbiomes can be steered by organic fertilizer inputs. Especially well-studied are fertilizer-induced changes on bacteria and fungi and how changes in these groups alter plant performance. However, impacts on protist communities, including their trophic interactions within the microbiome and consequences on plant performance remain largely unknown. Here, we tracked the entire microbiome, including bacteria, fungi, and protists, over six growing seasons of cucumber under different fertilization regimes (conventional, organic, and Trichoderma bio-organic fertilization) and linked microbial data to plant yield to identify plant growth-promoting microbes. RESULTS: Yields were higher in the (bio-)organic fertilization treatments. Soil abiotic conditions were altered by the fertilization regime, with the prominent effects coming from the (bio-)organic fertilization treatments. Those treatments also led to the pronounced shifts in protistan communities, especially microbivorous cercozoan protists. We found positive correlations of these protists with plant yield and the density of potentially plant-beneficial microorganisms. We further explored the mechanistic ramifications of these relationships via greenhouse experiments, showing that cercozoan protists can positively impact plant growth, potentially via interactions with plant-beneficial microorganisms including Trichoderma, the biological agent delivered by the bio-fertilizer. CONCLUSIONS: We show that protists may play central roles in stimulating plant performance through microbiome interactions. Future agricultural practices might aim to specifically enhance plant beneficial protists or apply those protists as novel, sustainable biofertilizers. Video abstract.


Asunto(s)
Eucariontes , Microbiología del Suelo , Fertilizantes/análisis , Plantas , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...