Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Methods ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658647

RESUMEN

State-of-the-art super-resolution microscopy allows researchers to spatially resolve single proteins in dense clusters. However, accurate quantification of protein organization and stoichiometries requires a general method to evaluate absolute binder labeling efficiency, which is currently unavailable. Here we introduce a universally applicable approach that uses a reference tag fused to a target protein of interest. By attaching high-affinity binders, such as antibodies or nanobodies, to both the reference tag and the target protein, and then employing DNA-barcoded sequential super-resolution imaging, we can correlate the location of the reference tag with the target molecule binder. This approach facilitates the precise quantification of labeling efficiency at the single-protein level.

2.
Cell ; 187(7): 1785-1800.e16, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552614

RESUMEN

To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.


Asunto(s)
Proteómica , Imagen Individual de Molécula , ADN , Microscopía Fluorescente/métodos , Neuronas , Proteínas
3.
Nature ; 617(7962): 711-716, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37225882

RESUMEN

Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches1-6 can achieve resolution in cells in the range of 15 to 20 nm, but interactions between individual biomolecules occur at length scales below 10 nm and characterization of intramolecular structure requires Ångström resolution. State-of-the-art super-resolution implementations7-14 have demonstrated spatial resolutions down to 5 nm and localization precisions of 1 nm under certain in vitro conditions. However, such resolutions do not directly translate to experiments in cells, and Ångström resolution has not been demonstrated to date. Here we introdue a DNA-barcoding method, resolution enhancement by sequential imaging (RESI), that improves the resolution of fluorescence microscopy down to the Ångström scale using off-the-shelf fluorescence microscopy hardware and reagents. By sequentially imaging sparse target subsets at moderate spatial resolutions of >15 nm, we demonstrate that single-protein resolution can be achieved for biomolecules in whole intact cells. Furthermore, we experimentally resolve the DNA backbone distance of single bases in DNA origami with Ångström resolution. We use our method in a proof-of-principle demonstration to map the molecular arrangement of the immunotherapy target CD20 in situ in untreated and drug-treated cells, which opens possibilities for assessing the molecular mechanisms of targeted immunotherapy. These observations demonstrate that, by enabling intramolecular imaging under ambient conditions in whole intact cells, RESI closes the gap between super-resolution microscopy and structural biology studies and thus delivers information key to understanding complex biological systems.


Asunto(s)
Antígenos CD20 , Células , ADN , Microscopía Fluorescente , Disciplinas de las Ciencias Biológicas/instrumentación , Disciplinas de las Ciencias Biológicas/métodos , Disciplinas de las Ciencias Biológicas/normas , Inmunoterapia , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microscopía Fluorescente/normas , Código de Barras del ADN Taxonómico , ADN/análisis , ADN/química , Antígenos CD20/análisis , Antígenos CD20/química , Células/efectos de los fármacos , Células/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...