Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998001

RESUMEN

Diseases are responsible for losses in livestock production by increasing animal mortality and reducing productivity. The administration of antibiotics can help mitigate these negative effects. However, inappropriate use can lead to severe complications, such as raising antibiotic resistance. The purpose of this study was to perform a comparative analysis of antibiotic use and disease frequency over four years, based on the size of dairy farms and the type of farm. The study covered a 4-year period and included medium dairy farms (20-50 cows, n = 13), large dairy farms (>250 cows, n = 8), and large beef farms (n = 8). The collected data involved antimicrobial use but also included farm demographics, animal health, disease frequency, and herd management practices. The criteria used to categorise antibiotics into groups A-D were based on the EMA guidelines. The carried-out study showed that the large dairy cattle farms had the highest antibiotic consumption (18.29 mg·PCU-1), due to the high frequency of diseases, and consequently, the treatment of calf (diarrhoea, lung inflammations) and cow diseases (general treatment and mastitis). Cattle on large beef farms suffer mainly from general diseases caused by maintenance and herd management conditions. The use of restrict antibiotics was, in some cases, unjustified (antibiotics for dry cow therapy). Future studies should consider a larger number of farms, taking into account the given direction of cattle production.

2.
Sci Rep ; 13(1): 21284, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042872

RESUMEN

The aim of this study was to elucidate how different nursery production methods influence the composition of and relationship between soil and root community levels of Abies alba. In the Miedzylesie Forest District, we quantified the responses of samples of both community-level fine roots and surrounding soil to environmental changes evoked by various seedling production methods. Fungi levels were identified based on their ITS 1 region and 5.8 S rDNA component. Analysis was conducted using Illumina SBS technology, and the obtained sequences were compared with reference samples deposited in the UNITE. Chemical analysis of the soil was also performed. Different nursery production methods resulted in a strong decoupling in the responses of fungal community levels between soil and roots. Changes in growth conditions imposed by production methods were significant in determining species composition. We found differences in fungal communities among functional groups of samples. In the soil, the dominant species of mycorrhizal fungi were Tylospora asterophora, Amanita rubescens, and Russula ionochlora. Mycorrhizal fungi in roots included Tuber anniae, Thelephoraceae sp., and Acephala applanata. Specific soil substrate conditions significantly influenced fungal community composition, leading to an increase in abundance of mycorrhizal fungi, specifically T. anniae.


Asunto(s)
Abies , Micobioma , Micorrizas , Abies/microbiología , Raíces de Plantas/microbiología , Suelo , Micorrizas/fisiología , Hongos/genética , Microbiología del Suelo
3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628809

RESUMEN

Rhizosphere microbial communities can influence plant growth and development. Natural regeneration processes take place in the tree stands of protected areas, which makes it possible to observe the natural changes taking place in the rhizosphere along with the development of the plants. This study aimed to determine the diversity (taxonomic and functional) of the rhizosphere fungal communities of Norway spruce growing in one of four developmental stages. Our research was based on the ITS region using Illumina system sequencing. Saprotrophs dominated in the studied rhizospheres, but their percentage share decreased with the age of the development group (for 51.91 from 43.13%). However, in the case of mycorrhizal fungi, an opposite trend was observed (16.96-26.75%). The most numerous genera were: saprotrophic Aspergillus (2.54-3.83%), Penicillium (6.47-12.86%), Pyrenochaeta (1.39-11.78%), pathogenic Curvularia (0.53-4.39%), and mycorrhizal Cortinarius (1.80-5.46%), Pseudotomentella (2.94-5.64%) and Tomentella (4.54-15.94%). The species composition of rhizosphere fungal communities was favorable for the regeneration of natural spruce and the development of multi-generational Norway spruce stands. The ratio of the abundance of saprotrophic and mycorrhizal fungi to the abundance of pathogens was high and promising for the durability of the large proportion of spruce in the Wigry National Park and for forest ecosystems in general.


Asunto(s)
Abies , Microbiota , Micorrizas , Picea , Pinus , Rizosfera , Polonia , Parques Recreativos , Micorrizas/genética , Noruega
4.
Plants (Basel) ; 11(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35567249

RESUMEN

The sessile oak is one of the most significant forest tree species in Europe. This species is vulnerable to various stresses, among which drought and powdery mildew have been the most serious threats. The aim of this study was to determine the influence of irrigation levels (overhead sprinklers) on the damage caused by powdery mildew to Quercus petraea growing in a nursery setting. Four irrigation rates were used: 100%, 75%, 50% and 25% of the full rate. The area of the leaves was measured and the ratio between the dry mass of the roots and the dry mass of the entire plant was calculated after the growing season in years' 2015 and 2016. Limiting the total amount of water provided to a level between 53.6 mm × m-2 and 83.6 mm × m-2, particularly in the months when total precipitation was low (VII and VIII 2015), a supplemental irrigation rate between 3 and 9 mm × m-2 resulted in a lower severity of oak powdery mildew on leaves and lead to a favorable allocation of the biomass of the sessile oak seedlings to the root system. The severity of infection on oak leaf blades was lower when irrigation rates were reduced. The greatest mean degree of infestation in 2015 was noted in the 100% irrigation rate (14.6%), 75% (6.25%), 50% (4.35%) and 25% (5.47%). In 2016, there was no significant difference between the mean area of leaves infected by powdery mildew depending on the applied irrigation rate. The shoot-root biomass rate showed greater variation under limited irrigation rates. Controlling the irrigation rate can become an effective component of integrated protection strategies against this pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA