Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Bioenerg Biomembr ; 53(2): 109-118, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33585958

RESUMEN

Microglial activation involves both fragmentation of the mitochondrial network and changes in cellular Ca2+ homeostasis, but possible modifications in mitochondrial calcium uptake have never been described in this context. Here we report that activated microglial BV-2 cells have impaired mitochondrial calcium uptake, including lower calcium retention capacity and calcium uptake rates. These changes were not dependent on altered expression of the mitochondrial calcium uniporter. Respiratory capacity and the inner membrane potential, key determinants of mitochondrial calcium uptake, are both decreased in activated microglial BV-2 cells. Modified mitochondrial calcium uptake correlates with impaired cellular calcium signaling, including reduced ER calcium stores, and decreased replenishment by store operated calcium entry (SOCE). Induction of mitochondrial fragmentation through Mfn2 knockdown in control cells mimicked this effect, while inhibiting LPS-induced mitochondrial fragmentation by a dominant negative form of Drp1 prevented it. Overall, our results show that mitochondrial fragmentation induced by LPS promotes altered Ca2+ homeostasis in microglial cells, a new aspect of microglial activation that could be a key feature in the inflammatory role of these cells.


Asunto(s)
Calcio/metabolismo , Homeostasis/inmunología , Lipopolisacáridos/metabolismo , Microglía/metabolismo , Mitocondrias/metabolismo , Humanos
2.
Mol Aspects Med ; 71: 100826, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31630771

RESUMEN

The brain is highly dependent on mitochondrial energy metabolism. As a result, mitochondrial dysfunction is a central aspect of many adult-onset neurological diseases, including stroke, ALS, Alzheimer's, Huntington's, and Parkinson's diseases. We review here how different mitochondrial functions, including oxidative phosphorylation, mitochondrial dynamics, oxidant generation, cell death regulation, Ca2+ homeostasis, and proteostasis are involved in these disorders.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Señalización del Calcio , Metabolismo Energético , Humanos , Dinámicas Mitocondriales , Enfermedades Neurodegenerativas/patología , Fosforilación Oxidativa , Estrés Oxidativo , Proteostasis , Especies Reactivas de Oxígeno/metabolismo
3.
Braz J Med Biol Res ; 52(9): e8935, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31482979

RESUMEN

The scientific publication landscape is changing quickly, with an enormous increase in options and models. Articles can be published in a complex variety of journals that differ in their presentation format (online-only or in-print), editorial organizations that maintain them (commercial and/or society-based), editorial handling (academic or professional editors), editorial board composition (academic or professional), payment options to cover editorial costs (open access or pay-to-read), indexation, visibility, branding, and other aspects. Additionally, online submissions of non-revised versions of manuscripts prior to seeking publication in a peer-reviewed journal (a practice known as pre-printing) are a growing trend in biological sciences. In this changing landscape, researchers in biochemistry and molecular biology must re-think their priorities in terms of scientific output dissemination. The evaluation processes and institutional funding for scientific publications should also be revised accordingly. This article presents the results of discussions within the Department of Biochemistry, University of São Paulo, on this subject.


Asunto(s)
Bioquímica , Biología Molecular , Publicaciones Periódicas como Asunto/estadística & datos numéricos , Edición/tendencias , Investigación , Brasil , Humanos , Publicaciones Periódicas como Asunto/normas , Publicaciones Periódicas como Asunto/tendencias
4.
Braz. j. med. biol. res ; 52(9): e8935, 2019. graf
Artículo en Inglés | LILACS | ID: biblio-1019568

RESUMEN

The scientific publication landscape is changing quickly, with an enormous increase in options and models. Articles can be published in a complex variety of journals that differ in their presentation format (online-only or in-print), editorial organizations that maintain them (commercial and/or society-based), editorial handling (academic or professional editors), editorial board composition (academic or professional), payment options to cover editorial costs (open access or pay-to-read), indexation, visibility, branding, and other aspects. Additionally, online submissions of non-revised versions of manuscripts prior to seeking publication in a peer-reviewed journal (a practice known as pre-printing) are a growing trend in biological sciences. In this changing landscape, researchers in biochemistry and molecular biology must re-think their priorities in terms of scientific output dissemination. The evaluation processes and institutional funding for scientific publications should also be revised accordingly. This article presents the results of discussions within the Department of Biochemistry, University of São Paulo, on this subject.


Asunto(s)
Humanos , Publicaciones Periódicas como Asunto/estadística & datos numéricos , Edición/tendencias , Investigación , Bioquímica , Biología Molecular , Publicaciones Periódicas como Asunto/normas , Publicaciones Periódicas como Asunto/tendencias , Brasil
5.
Braz J Med Biol Res ; 38(3): 345-52, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15761613

RESUMEN

Mitochondrial ion transport, oxidative phosphorylation, redox balance, and physical integrity are key factors in tissue survival following potentially damaging conditions such as ischemia/reperfusion. Recent research has demonstrated that pharmacologically activated inner mitochondrial membrane ATP-sensitive K+ channels (mitoK(ATP)) are strongly cardioprotective under these conditions. Furthermore, mitoK(ATP) are physiologically activated during ischemic preconditioning, a procedure which protects against ischemic damage. In this review, we discuss mechanisms by which mitoK(ATP) may be activated during preconditioning and the mitochondrial and cellular consequences of this activation, focusing on end-effects which may promote ischemic protection. These effects include decreased loss of tissue ATP through reverse activity of ATP synthase due to increased mitochondrial matrix volumes and lower transport of adenine nucleotides into the matrix. MitoK(ATP) also decreases the release of mitochondrial reactive oxygen species by promoting mild uncoupling in concert with K+/H+ exchange. Finally, mitoK(ATP) activity may inhibit mitochondrial Ca2+ uptake during ischemia, which, together with decreased reactive oxygen release, can prevent mitochondrial permeability transition, loss of organelle function, and loss of physical integrity. We discuss how mitochondrial redox status, K+ transport, Ca2+ transport, and permeability transitions are interrelated during ischemia/reperfusion and are determinant factors regarding the extent of tissue damage.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Canales de Potasio/fisiología , Transporte Biológico , Humanos , Precondicionamiento Isquémico Miocárdico , Potenciales de la Membrana/fisiología , Isquemia Miocárdica/metabolismo , Estrés Oxidativo , Fosforilación , Potasio/metabolismo , Canales de Potasio/metabolismo
6.
Braz. j. med. biol. res ; 38(3): 345-352, mar. 2005. ilus
Artículo en Inglés | LILACS | ID: lil-394809

RESUMEN

Mitochondrial ion transport, oxidative phosphorylation, redox balance, and physical integrity are key factors in tissue survival following potentially damaging conditions such as ischemia/reperfusion. Recent research has demonstrated that pharmacologically activated inner mitochondrial membrane ATP-sensitive K+ channels (mitoK ATP) are strongly cardioprotective under these conditions. Furthermore, mitoK ATP are physiologically activated during ischemic preconditioning, a procedure which protects against ischemic damage. In this review, we discuss mechanisms by which mitoK ATP may be activated during preconditioning and the mitochondrial and cellular consequences of this activation, focusing on end-effects which may promote ischemic protection. These effects include decreased loss of tissue ATP through reverse activity of ATP synthase due to increased mitochondrial matrix volumes and lower transport of adenine nucleotides into the matrix. MitoK ATP also decreases the release of mitochondrial reactive oxygen species by promoting mild uncoupling in concert with K+/H+ exchange. Finally, mitoK ATP activity may inhibit mitochondrial Ca2+ uptake during ischemia, which, together with decreased reactive oxygen release, can prevent mitochondrial permeability transition, loss of organelle function, and loss of physical integrity. We discuss how mitochondrial redox status, K+ transport, Ca2+ transport, and permeability transitions are interrelated during ischemia/reperfusion and are determinant factors regarding the extent of tissue damage.


Asunto(s)
Humanos , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Canales de Potasio/fisiología , Transporte Biológico , Precondicionamiento Isquémico Miocárdico , Potenciales de la Membrana/fisiología , Isquemia Miocárdica/metabolismo , Estrés Oxidativo , Fosforilación , Canales de Potasio/metabolismo , Potasio/metabolismo
7.
J Biol Chem ; 276(36): 33369-74, 2001 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-11441006

RESUMEN

Protection of heart against ischemia-reperfusion injury by ischemic preconditioning and K(ATP) channel openers is known to involve the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). Brain is also protected by ischemic preconditioning and K(ATP) channel openers, and it has been suggested that mitoK(ATP) may also play a key role in brain protection. However, it is not known whether mitoK(ATP) exists in brain mitochondria, and, if so, whether its properties are similar to or different from those of heart mitoK(ATP). We report partial purification and reconstitution of a new mitoK(ATP) from rat brain mitochondria. We measured K(+) flux in proteoliposomes and found that brain mitoK(ATP) is regulated by the same ligands as those that regulate mitoK(ATP) from heart and liver. We also examined the effects of opening and closing mitoK(ATP) on brain mitochondrial respiration, and we estimated the amount of mitoK(ATP) by means of green fluorescence probe BODIPY-FL-glyburide labeling of the sulfonylurea receptor of mitoK(ATP) from brain and liver. Three independent methods indicate that brain mitochondria contain six to seven times more mitoK(ATP) per milligram of mitochondrial protein than liver or heart.


Asunto(s)
Adenosina Trifosfato/metabolismo , Encéfalo/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Mitocondrias/metabolismo , Canales de Potasio/química , Animales , Antiarrítmicos/farmacología , Compuestos de Boro/farmacología , Cromakalim/farmacología , Ácidos Decanoicos/farmacología , Diazóxido/farmacología , Colorantes Fluorescentes/farmacología , Gliburida/farmacología , Guanosina Trifosfato/metabolismo , Hidroxiácidos/farmacología , Cinética , Ligandos , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Modelos Biológicos , Miocardio/metabolismo , Consumo de Oxígeno , Proteolípidos/metabolismo , Ratas , Factores de Tiempo , Vasodilatadores/farmacología
8.
FEBS Lett ; 495(1-2): 12-5, 2001 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-11322939

RESUMEN

Mitochondrial permeability transition (MPT) is a non-selective inner membrane permeabilization that may precede necrotic and apoptotic cell death. Although this process has a specific inhibitor, cyclosporin A, little is known about the nature of the proteinaceous pore that results in MPT. Here, we review data indicating that MPT is not a consequence of the opening of a pre-formed pore, but the consequence of oxidative damage to pre-existing membrane proteins.


Asunto(s)
Canales Iónicos , Proteínas de la Membrana/fisiología , Estrés Oxidativo/fisiología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Calcio/metabolismo , Calcio/farmacología , Humanos , Proteínas de la Membrana/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , NAD/metabolismo , Necrosis , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fosfatos/metabolismo , Fosfatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/antagonistas & inhibidores , Compuestos de Sulfhidrilo/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 280(2): H649-57, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11158963

RESUMEN

There is an emerging consensus that pharmacological opening of the mitochondrial ATP-sensitive K(+) (K(ATP)) channel protects the heart against ischemia-reperfusion damage; however, there are widely divergent views on the effects of openers on isolated heart mitochondria. We have examined the effects of diazoxide and pinacidil on the bioenergetic properties of rat heart mitochondria. As expected of hydrophobic compounds, these drugs have toxic, as well as pharmacological, effects on mitochondria. Both drugs inhibit respiration and increase membrane proton permeability as a function of concentration, causing a decrease in mitochondrial membrane potential and a consequent decrease in Ca(2+) uptake, but these effects are not caused by opening mitochondrial K(ATP) channels. In pharmacological doses (<50 microM), both drugs open mitochondrial K(ATP) channels, and resulting changes in membrane potential and respiration are minimal. The increased K(+) influx associated with mitochondrial K(ATP) channel opening is approximately 30 nmol. min(-1). mg(-1), a very low rate that will depolarize by only 1-2 mV. However, this increase in K(+) influx causes a significant increase in matrix volume. The volume increase is sufficient to reverse matrix contraction caused by oxidative phosphorylation and can be observed even when respiration is inhibited and the membrane potential is supported by ATP hydrolysis, conditions expected during ischemia. Thus opening mitochondrial K(ATP) channels has little direct effect on respiration, membrane potential, or Ca(2+) uptake but has important effects on matrix and intermembrane space volumes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Canales de Potasio/metabolismo , Animales , Aniones/metabolismo , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/fisiología , Diazóxido/toxicidad , Metabolismo Energético/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Mitocondrias/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Dilatación Mitocondrial/fisiología , Pinacidilo/toxicidad , Potasio/metabolismo , Ratas , Ácido Succínico/metabolismo , Desacopladores/toxicidad , Vasodilatadores/toxicidad
10.
Am J Physiol Cell Physiol ; 279(3): C852-9, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10942734

RESUMEN

This study tested the hypothesis that the activity of the mitochondrial membrane permeability transition pore (PTP) affects the resting mitochondrial membrane potential (DeltaPsi) of normal, healthy cells and that the anti-apoptotic gene product Bcl-2 inhibits the basal activity of the PTP. DeltaPsi was measured by both fluorometric and nonfluorometric methods with SY5Y human neuroblastoma cells and with GT1-7 hypothalamic cells and PC12 pheochromocytoma cells in the absence and presence of Bcl-2 gene overexpression. The resting DeltaPsi of Bcl-2 nonexpressing PC12 and wild-type SY5Y cells was increased significantly by the presence of the PTP inhibitor cyclosporin A (CsA) or by intracellular Ca(2+) chelation through exposure to the acetoxymethyl ester of 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM). The DeltaPsi of Bcl-2-overexpressing PC12 cells was larger than that of Bcl-2-negative cells and not significantly increased by CsA or by Ca(2+) chelation. CsA did not present a significant effect on the DeltaPsi monitored in unstressed GT1-7 cells but did inhibit the decrease in DeltaPsi elicited by the addition of t-butyl hydroperoxide, an oxidative inducer of the mitochondrial permeability transition. These results support the hypothesis that an endogenous PTP activity can contribute to lowering the basal DeltaPsi of some cells and that Bcl-2 can regulate the endogenous activity of the mitochondrial PTP.


Asunto(s)
Quelantes/farmacología , Ciclosporina/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Mitocondrias/fisiología , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Animales , Humanos , Hipotálamo/citología , Hipotálamo/fisiología , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Células PC12 , Permeabilidad/efectos de los fármacos , Ratas , Células Tumorales Cultivadas , terc-Butilhidroperóxido/farmacología
11.
FEBS Lett ; 473(2): 177-82, 2000 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-10812070

RESUMEN

The involvement of reactive oxygen species in Ca(2+)-induced mitochondrial membrane permeabilization and cell viability was studied using yeast cells in which the thioredoxin peroxidase (TPx) gene was disrupted and/or catalase was inhibited by 3-amino-1,2, 4-triazole (ATZ) treatment. Wild-type Saccharomyces cerevisiae cells were very resistant to Ca(2+) and inorganic phosphate or t-butyl hydroperoxide-induced mitochondrial membrane permeabilization, but suffered an immediate decrease in mitochondrial membrane potential when treated with Ca(2+) and the dithiol binding reagent phenylarsine oxide. In contrast, S. cerevisiae spheroblasts lacking the TPx gene and/or treated with ATZ suffered a decrease in mitochondrial membrane potential, generated higher amounts of hydrogen peroxide and had decreased viability under these conditions. In all cases, the decrease in mitochondrial membrane potential could be inhibited by ethylene glycol-bis(beta-aminoethyl ether) N,N, N',N'-tetraacetic acid, dithiothreitol or ADP, but not by cyclosporin A. We conclude that TPx and catalase act together, maintaining cell viability and protecting S. cerevisiae mitochondria against Ca(2+)-promoted membrane permeabilization, which presents similar characteristics to mammalian permeability transition.


Asunto(s)
Calcio/farmacología , Catalasa/fisiología , Membranas Intracelulares/fisiología , Mitocondrias/fisiología , Proteínas de Neoplasias , Peroxidasas/fisiología , Saccharomyces cerevisiae/fisiología , Adenosina Difosfato/farmacología , Amitrol (Herbicida)/farmacología , Calcio/metabolismo , Catalasa/antagonistas & inhibidores , División Celular/efectos de los fármacos , Ditiotreitol/farmacología , Ácido Egtácico/farmacología , Inhibidores Enzimáticos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Mutación , Permeabilidad/efectos de los fármacos , Peroxidasas/genética , Peroxirredoxinas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
12.
Braz J Med Biol Res ; 33(2): 241-50, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10657067

RESUMEN

It is well known that mitochondria are the main site for ATP generation within most tissues. However, mitochondria also participate in a surprising number of alternative activities, including intracellular Ca2+ regulation, thermogenesis and the control of apoptosis. In addition, mitochondria are the main cellular generators of reactive oxygen species, and may trigger necrotic cell death under conditions of oxidative stress. This review concentrates on these alternative mitochondrial functions, and their role in cell physiopathology.


Asunto(s)
Apoptosis/fisiología , Mitocondrias/fisiología , Adenosina Trifosfato/biosíntesis , Temperatura Corporal , Calcio/metabolismo , Homeostasis , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
13.
Braz. j. med. biol. res ; 33(2): 241-50, Feb. 2000.
Artículo en Inglés | LILACS | ID: lil-252302

RESUMEN

It is well known that mitochondria are the main site for ATP generation within most tissues. However, mitochondria also participate in a surprising number of alternative activities, including intracellular Ca2+ regulation, thermogenesis and the control of apoptosis. In addition, mitochondria are the main cellular generators of reactive oxygen species, and may trigger necrotic cell death under conditions of oxidative stress. This review concentrates on these alternative mitochondrial functions, and their role in cell physiopathology


Asunto(s)
Adenosina Trifosfato/biosíntesis , Apoptosis/fisiología , Calcio/metabolismo , Mitocondrias/fisiología , Especies Reactivas de Oxígeno/fisiología , Temperatura Corporal , Muerte Celular/fisiología , Homeostasis , Estrés Oxidativo/fisiología
14.
Cell Death Differ ; 7(10): 903-10, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11279535

RESUMEN

Digitonin-permeabilized PC12 and GT1-7 neural cells exhibited a cyclosporin A-sensitive decrease in mitochondrial membrane potential, increased volume, and release of the pro-apoptotic factor cytochrome c in the presence of Ca2+ and the mitochondrial permeability transition (MPT) inducers t-butyl hydroperoxide (t-bOOH) or phenylarsine oxide (PhAsO). Although the concentration of PhAsO required to induce the MPT was similar for Bcl-2 negative and Bcl-2 overexpressing transfected cells (Bcl-2(+)), the level of t-bOOH necessary for triggering the MPT was much higher for Bcl-2(+) cells. A higher concentration of t-bOOH was also necessary for promoting the oxidation of mitochondrial pyridine nucleotides in Bcl-2(+) cells. The sensitivity of Bcl-2(- ) cell mitochondria to t-bOOH but not PhAsO could be overcome by the use of conditions that protect the pyridine nucleotides against oxidation. We conclude that the increased ability of Bcl-2(+) cells to maintain mitochondrial pyridine nucleotides in a reduced redox state is a sufficient explanation for their resistance to MPT under conditions of oxidative stress induced by Ca2+ plus t-bOOH.


Asunto(s)
Apoptosis/fisiología , Grupo Citocromo c/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Calcio/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/fisiología , Ciclosporina/farmacología , Inhibidores Enzimáticos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología , Células PC12 , Proteínas Proto-Oncogénicas c-bcl-2/farmacología , Ratas
15.
Free Radic Biol Med ; 26(3-4): 463-71, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9895239

RESUMEN

Up to 2% of the oxygen consumed by the mitochondrial respiratory chain undergoes one electron reduction, typically by the semiquinone form of coenzyme Q, to generate the superoxide radical, and subsequently other reactive oxygen species such as hydrogen peroxide and the hydroxyl radical. Under conditions in which mitochondrial generation of reactive oxygen species is increased (such as in the presence of Ca2+ ions or when the mitochondrial antioxidant defense mechanisms are compromised), these reactive oxygen species may lead to irreversible damage of mitochondrial DNA, membrane lipids and proteins, resulting in mitochondrial dysfunction and ultimately cell death. The nature of this damage and the cellular conditions in which it occurs are discussed in this review article.


Asunto(s)
Transporte de Electrón , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/fisiología , Daño del ADN , ADN Mitocondrial/genética , Humanos , Peroxidación de Lípido/fisiología , Proteínas de la Membrana/metabolismo , Mitocondrias/patología , Necrosis , Oxidación-Reducción , Permeabilidad
16.
Biosci Rep ; 19(6): 525-33, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10841269

RESUMEN

Ca2+ and inorganic phosphate-induced mitochondrial swelling and membrane protein thiol oxidation, which are associated with mitochondrial permeability transition, are inhibited by progressively decreasing the incubation medium pH between 7.2 and 6.0. Nevertheless, the detection of mitochondrial H2O2 production under these conditions is increased. Permeability transition induced by phenylarsine oxide, which promotes membrane protein thiol cross-linkage in a process independent of Ca2+ or reactive oxygen species, is also strongly inhibited in acidic incubation media. In addition, we observed that the decreased protein thiol reactivity with phenylarsine oxide or phenylarsine oxide-induced swelling at pH 6.0 is reversed by diethyl pyrocarbonate, in a hydroxylamine-sensitive manner. These results provide evidence that the inhibition of mitrochondrial permeability transition observed at lower incubation medium pH is mediated by a decrease in membrane protein thiol reactivity, related to the protonation of protein histidyl residues.


Asunto(s)
Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias Hepáticas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Animales , Antimicina A/farmacología , Arsenicales/farmacología , Calcimicina/farmacología , Calcio/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Dietil Pirocarbonato/farmacología , Concentración de Iones de Hidrógeno , Hidroxilamina/farmacología , Membranas Intracelulares/efectos de los fármacos , Ionóforos/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Oxidación-Reducción , Permeabilidad , Ratas , Ratas Wistar , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/efectos de los fármacos , Albúmina Sérica Bovina/metabolismo
17.
J Bioenerg Biomembr ; 31(6): 581-90, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10682916

RESUMEN

The mitochondrial effects of submicromolar concentrations of six triarylmethane dyes, with potential applications in antioncotic photodynamic therapy, were studied. All dyes promoted an inhibition of glutamate or succinate-supported respiration in uncoupled mitochondria, in a manner stimulated photodynamically. No inhibition of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) supported respiration was observed, indicating that these dyes do not affect mitochondrial complex IV. When mitochondria were energized with TMPD in the absence of an uncoupler, treatment with victoria blue R, B, or BO, promoted a dissipation of mitochondrial membrane potential and increase of respiratory rates, compatible with mitochondrial uncoupling. This effect was observed even in the dark, and was not prevented by EGTA, Mg2+ or cyclosporin A, suggesting that it is promoted by a direct effect of the dye on inner mitochondrial membrane permeability to protons. Indeed, victoria blue R, B, and BO promoted swelling of valinomycin-treated mitochondria incubated in a hyposmotic K+-acetate-based medium, confirming that these dyes act as classic protonophores such as FCCP. On the other hand, ethyl violet, crystal violet, and malachite green promoted a dissipation of mitochondrial membrane potential, accompanied by mitochondrial swelling, which was prevented by EGTA, Mg2+, and cyclosporin A, demonstrating that these drugs induce mitochondrial permeability transition. This mitochondrial permeabilization was followed by respiratory inhibition, attributable to cytochrome c release, and was caused by the oxidation of NAD(P)H promoted by these drugs.


Asunto(s)
Colorantes/farmacología , Colorantes Verde de Lisamina/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Colorantes de Rosanilina/farmacología , Animales , Ácido Ascórbico/metabolismo , Violeta de Genciana/farmacología , Ácido Glutámico/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Ósmosis/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Compuestos de Amonio Cuaternario/farmacología , Ratas , Tetrametilfenilendiamina/metabolismo , Valinomicina/farmacología
18.
Arch Biochem Biophys ; 359(1): 77-81, 1998 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-9799563

RESUMEN

Mitochondrial swelling and membrane protein thiol oxidation associated with mitochondrial permeability transition induced by Ca2+ and t-butyl hydroperoxide or inorganic phosphate, but not 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid or phenylarsine oxide, are inhibited by the local anesthetic dibucaine. Dibucaine promotes an inhibition of the Ca2+-induced increase in mitochondrial H2O2 generation measured by the oxidation of scopoletin in the presence of horseradish peroxidase. This decrease in mitochondrial H2O2 generation may be attributed to the reduction of Ca2+ binding to the membrane induced by dibucaine, as assessed by measuring 45Ca2+ binding to the mitochondrial membrane. Mg2+ also inhibited Ca2+ binding to the mitochondrial membrane, mitochondrial swelling, membrane protein thiol oxidation, and H2O2 generation induced by Ca2+. Together, these results demonstrate that the mechanism by which dibucaine and Mg2+ inhibit mitochondrial permeability transition is related to the decrease in reactive oxygen species generation induced by Ca2+-promoted alterations of inner mitochondrial membrane properties.


Asunto(s)
Calcio/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Dibucaína/farmacología , Magnesio/farmacología , Mitocondrias Hepáticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Unión Competitiva/efectos de los fármacos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Ratas Wistar
19.
Arch Biochem Biophys ; 354(1): 151-7, 1998 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-9633610

RESUMEN

Ca(2+)-loaded rat liver mitochondria treated with 3,5,3'-triiodothyronine (T3) undergo nonspecific inner membrane permeabilization, as evidenced by mitochondrial swelling, a decrease in membrane potential (delta psi), and an increase in the rate of oxygen uptake. T3 analogues thyroxine (T4), 3',5'-diiodothyronine (T2), and 3,5',3'-triiodothyronine (reverse T3), in decreasing order of potency, resulted in a similar but less extensive effect. Permeabilization induced by T3 is dependent on Ca2+ (1 microM) and T3 (0.5-25 microM) concentrations and is inhibited by cyclosporin A, a known inhibitor of mitochondrial permeability transition. Catalase or dithiothreitol also prevents membrane permeabilization, suggesting the participation of membrane protein thiol group oxidation induced by reactive oxygen species. The determination of the mitochondrial membrane protein thiol group content after treatment with Ca2+ and T3 shows a significant decrease, due to thiol oxidation. When mitochondria are incubated in the presence of inorganic phosphate and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone, mitochondrial swelling still occurs after treatment with T3 and high Ca2+ concentrations, suggesting that mitochondrial permeabilization is not dependent on T3-induced delta psi or matrix pH alterations. Under these experimental conditions, when no oxygen is present in the incubation medium, no permeabilization occurs, suggesting that the permeabilization is dependent on mitochondrial-generated reactive oxygen species. Confirming this hypothesis, superoxide generation in a suspension of submitochondrial particles is increased when T3 is present. Our results lead to the conclusion that T3 induces a situation of oxidative stress in isolated liver mitochondria, with Ca(2+)-mediated membrane protein thiol oxidation and nonspecific inner membrane permeabilization.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Triyodotironina/farmacología , Animales , Calcio/metabolismo , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Mitocondrias Hepáticas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar
20.
J Biol Chem ; 273(21): 12766-9, 1998 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-9582302

RESUMEN

Mitochondrial swelling and membrane protein thiol oxidation associated with mitochondrial permeability transition induced by Ca2+ and inorganic phosphate are inhibited in a dose-dependent manner either by catalase, the thiol-specific antioxidant enzyme (TSA), a protein recently demonstrated to present thiol peroxidase activity, or ebselen, a selenium-containing heterocycle which also possesses thiol peroxidase activity. This inhibition of mitochondrial permeability transition is due to the removal of mitochondrial-generated H2O2 which can easily diffuse to the extramitochondrial space. Whereas ebselen required the presence of reduced glutathione as a reductant to grant its protective effect, TSA was fully reduced by mitochondrial components. Decrease in the oxygen concentration of the reaction medium also inhibits mitochondrial permeabilization and membrane protein thiol oxidation, in a concentration-dependent manner. The results presented in this report confirm that mitochondrial permeability transition induced by Ca2+ and inorganic phosphate is reactive oxygen species-dependent. The possible importance of TSA as an intracellular antioxidant, avoiding the onset of mitochondrial permeability transition, is discussed in the text.


Asunto(s)
Antioxidantes/farmacología , Membranas Intracelulares/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Neoplasias , Peroxidasas/farmacología , Especies Reactivas de Oxígeno , Compuestos de Sulfhidrilo/metabolismo , Azoles/farmacología , Catalasa/farmacología , Peróxido de Hidrógeno/metabolismo , Isoindoles , Compuestos de Organoselenio/farmacología , Permeabilidad/efectos de los fármacos , Peroxirredoxinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...