Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(29): e2301302120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428935

RESUMEN

Carbapenemase and extended ß-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Klebsiella pneumoniae/genética , Lipopolisacáridos , Antígenos O , Klebsiella , Western Blotting , Infecciones por Klebsiella/prevención & control
2.
Glycoconj J ; 38(4): 421-435, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33730261

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) cause a wide range of clinical diseases such as bacteremia and urinary tract infections. The increase of multidrug resistant ExPEC strains is becoming a major concern for the treatment of these infections and E. coli has been identified as a critical priority pathogen by the WHO. Therefore, the development of vaccines has become increasingly important, with the surface lipopolysaccharide constituting a promising vaccine target. This study presents genetic and structural analysis of clinical urine isolates from Switzerland belonging to the serotype O25. Approximately 75% of these isolates were shown to correspond to the substructure O25B only recently described in an emerging clone of E. coli sequence type 131. To address the high occurrence of O25B in clinical isolates, an O25B glycoconjugate vaccine was prepared using an E. coli glycosylation system. The O antigen cluster was integrated into the genome of E. coli W3110, thereby generating an E. coli strain able to synthesize the O25B polysaccharide on a carrier lipid. The polysaccharide was enzymatically conjugated to specific asparagine side chains of the carrier protein exotoxin A (EPA) of Pseudomonas aeruginosa by the PglB oligosaccharyltransferase from Campylobacter jejuni. Detailed characterization of the O25B-EPA conjugate by use of physicochemical methods including NMR and GC-MS confirmed the O25B polysaccharide structure in the conjugate, opening up the possibility to develop a multivalent E. coli conjugate vaccine containing O25B-EPA.


Asunto(s)
Vacunas contra Escherichia coli/inmunología , Escherichia coli/clasificación , Glicoconjugados , Vacunas Conjugadas
3.
Glycobiology ; 29(9): 669-680, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31206156

RESUMEN

Shigellosis remains a major cause of diarrheal disease in developing countries and causes substantial morbidity and mortality in children. Vaccination represents a promising preventive measure to fight the burden of the disease, but despite enormous efforts, an efficacious vaccine is not available to date. The use of an innovative biosynthetic Escherichia coli glycosylation system substantially simplifies the production of a multivalent conjugate vaccine to prevent shigellosis. This bioconjugation approach has been used to produce the Shigella dysenteriae type O1 conjugate that has been successfully tested in a phase I clinical study in humans. In this report, we describe a similar approach for the production of an additional serotype required for a broadly protective shigellosis vaccine candidate. The Shigella flexneri 2a O-polysaccharide is conjugated to introduced asparagine residues of the carrier protein exotoxin A (EPA) from Pseudomonas aeruginosa by co-expression with the PglB oligosaccharyltransferase. The bioconjugate was purified, characterized using physicochemical methods and subjected to preclinical evaluation in rats. The bioconjugate elicited functional antibodies as shown by a bactericidal assay for S. flexneri 2a. This study confirms the applicability of bioconjugation for the S. flexneri 2a O-antigen, which provides an intrinsic advantage over chemical conjugates due to the simplicity of a single production step and ease of characterization of the homogenous monomeric conjugate formed. In addition, it shows that bioconjugates are able to raise functional antibodies against the polysaccharide antigen.


Asunto(s)
Inmunogenicidad Vacunal/inmunología , Antígenos O/inmunología , Shigella flexneri/inmunología , Vacunas Conjugadas/inmunología , Animales , Femenino , Antígenos O/química , Ratas , Ratas Sprague-Dawley , Shigella flexneri/química , Shigella flexneri/crecimiento & desarrollo , Vacunas Conjugadas/química
4.
Nat Chem ; 8(3): 242-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26892556

RESUMEN

Certain non-mammalian cell wall sugars are conserved across a variety of pathogenic bacteria. This conservation of structure, combined with their structural differences when compared with mammalian sugars, make them potentially powerful epitopes for immunization. Here, we report the synthesis of a glycoconjugate that displays the so-called 'inner core' sugars of Gram-negative bacterial cell walls. We also describe an antibacterial vaccination strategy based on immunization with the glycoconjugate and the subsequent administration of an inhibitor that uncovers the corresponding epitope in pathogenic bacteria. The core tetrasaccharide, Hep2Kdo2, a common motif in bacterial lipopolysaccharides, was synthesized and attached via a chain linker to a diphtheria toxin mutant carrier protein. This glycoconjugate generated titres of antibodies towards the inner core tetrasaccharide of the lipopolysaccharide, which were capable of binding the cell-surface sugars of bacterial pathogenic strains including Neisseria meningitidis, Pseudomonas aeruginosa and Escherichia coli. Exposure of bacterial lipopolysaccharide in in vitro experiments, using an inhibitor of capsular polysaccharide transport, enabled potent bacterial killing with antiserum.


Asunto(s)
Vacunas Bacterianas , Glicoconjugados/química , Lipopolisacáridos/química , Viabilidad Microbiana/efectos de los fármacos , Vacunas Bacterianas/química , Vacunas Bacterianas/metabolismo , Vacunas Bacterianas/farmacología , Toxina Diftérica/química , Glicoconjugados/metabolismo , Lipopolisacáridos/metabolismo , Neisseria meningitidis/efectos de los fármacos , Neisseria meningitidis/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo
5.
Glycobiology ; 26(1): 51-62, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26353918

RESUMEN

Shigellosis remains a major cause of diarrheal disease in developing countries and causes substantial morbidity and mortality in children. Glycoconjugate vaccines consisting of bacterial surface polysaccharides conjugated to carrier proteins are the most effective vaccines for controlling invasive bacterial infections. Nevertheless, the development of a multivalent conjugate vaccine to prevent Shigellosis has been hampered by the complex manufacturing process as the surface polysaccharide for each strain requires extraction, hydrolysis, chemical activation and conjugation to a carrier protein. The use of an innovative biosynthetic Escherichia coli glycosylation system substantially simplifies the production of glycoconjugates. Herein, the Shigella dysenteriae type 1 (Sd1) O-polysaccharide is expressed and its functional assembly on an E. coli glycosyl carrier lipid is demonstrated by HPLC analysis and mass spectrometry. The polysaccharide is enzymatically conjugated to specific asparagine residues of the carrier protein by co-expression of the PglB oligosaccharyltransferase and the carrier protein exotoxin A (EPA) from Pseudomonas aeruginosa. The extraction and purification of the Shigella glycoconjugate (Sd1-EPA) and its detailed characterization by the use of physicochemical methods including NMR and mass spectrometry is described. The report shows for the first time that bioconjugation provides a newly developed and improved approach to produce an Sd1 glycoconjugate that can be characterized using state-of-the-art techniques. In addition, this generic process together with the analytical methods is ideally suited for the production of additional Shigella serotypes, allowing the development of a multivalent Shigella vaccine.


Asunto(s)
Procesamiento Proteico-Postraduccional , Vacunas Antiprotozoos/inmunología , Shigella dysenteriae/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Pseudomonas aeruginosa/enzimología , Vacunas Conjugadas/inmunología
6.
Microb Genom ; 2(8): e000073, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-28348868

RESUMEN

Klebsiella pneumoniae is considered an urgent health concern due to the emergence of multi-drug-resistant strains for which vaccination offers a potential remedy. Vaccines based on surface polysaccharides are highly promising but need to address the high diversity of surface-exposed polysaccharides, synthesized as O-antigens (lipopolysaccharide, LPS) and K-antigens (capsule polysaccharide, CPS), present in K. pneumoniae. We present a comprehensive and clinically relevant study of the diversity of O- and K-antigen biosynthesis gene clusters across a global collection of over 500 K. pneumoniae whole-genome sequences and the seroepidemiology of human isolates from different infection types. Our study defines the genetic diversity of O- and K-antigen biosynthesis cluster sequences across this collection, identifying sequences for known serotypes as well as identifying novel LPS and CPS gene clusters found in circulating contemporary isolates. Serotypes O1, O2 and O3 were most prevalent in our sample set, accounting for approximately 80 % of all infections. In contrast, K serotypes showed an order of magnitude higher diversity and differ among infection types. In addition we investigated a potential association of O or K serotypes with phylogenetic lineage, infection type and the presence of known virulence genes. K1 and K2 serotypes, which are associated with hypervirulent K. pneumoniae, were associated with a higher abundance of virulence genes and more diverse O serotypes compared to other common K serotypes.


Asunto(s)
Variación Genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Virulencia/genética , Antígenos Bacterianos/genética , Antígenos de Superficie/genética , Humanos , Klebsiella pneumoniae/clasificación , Antígenos O/genética , Filogenia , Estudios Seroepidemiológicos , Serogrupo
7.
Open Biol ; 5(4): 140227, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25833378

RESUMEN

Conjugate vaccines belong to the most efficient preventive measures against life-threatening bacterial infections. Functional expression of N-oligosaccharyltransferase (N-OST) PglB of Campylobacter jejuni in Escherichia coli enables a simplified production of glycoconjugate vaccines in prokaryotic cells. Polysaccharide antigens of pathogenic bacteria can be covalently coupled to immunogenic acceptor proteins bearing engineered glycosylation sites. Transfer efficiency of PglBCj is low for certain heterologous polysaccharide substrates. In this study, we increased glycosylation rates for Salmonella enterica sv. Typhimurium LT2 O antigen (which lacks N-acetyl sugars) and Staphylococcus aureus CP5 polysaccharides by structure-guided engineering of PglB. A three-dimensional homology model of membrane-associated PglBCj, docked to the natural C. jejuni N-glycan attached to the acceptor peptide, was used to identify potential sugar-interacting residues as targets for mutagenesis. Saturation mutagenesis of an active site residue yielded the enhancing mutation N311V, which facilitated fivefold to 11-fold increased in vivo glycosylation rates as determined by glycoprotein-specific ELISA. Further rounds of in vitro evolution led to a triple mutant S80R-Q287P-N311V enabling a yield improvement of S. enterica LT2 glycoconjugates by a factor of 16. Our results demonstrate that bacterial N-OST can be tailored to specific polysaccharide substrates by structure-guided protein engineering.


Asunto(s)
Proteínas Bacterianas/genética , Campylobacter jejuni/genética , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Western Blotting , Campylobacter jejuni/enzimología , Conformación de Carbohidratos , Simulación por Computador , Ensayo de Inmunoadsorción Enzimática , Glicosilación , Hexosiltransferasas/química , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Mutación , Oligosacáridos/química , Oligosacáridos/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Salmonella enterica/genética , Salmonella enterica/metabolismo , Homología de Secuencia de Aminoácido , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Especificidad por Sustrato
8.
J Am Chem Soc ; 136(2): 566-9, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24377322

RESUMEN

The lipid carrier specificity of the protein N-glycosylation enzyme C. jejuni PglB was tested using a logical, synthetic array of natural and unnatural C10, C20, C30, and C40 polyisoprenol sugar pyrophosphates, including those bearing repeating cis-prenyl units. Unusual, short, synthetically accessible C20 prenols (nerylnerol 1d and geranylnerol 1e) were shown to be effective lipid carriers for PglB sugar substrates. Kinetic analyses for PglB revealed clear K(M)-only modulation with lipid chain length, thereby implicating successful in vitro application at appropriate concentrations. This was confirmed by optimized, efficient in vitro synthesis allowing >90% of Asn-linked ß-N-GlcNAc-ylated peptide and proteins. This reveals a simple, flexible biocatalytic method for glycoconjugate synthesis using PglB N-glycosylation machinery and varied chemically synthesized glycosylation donor precursors.


Asunto(s)
Campylobacter jejuni/enzimología , Dolicoles/metabolismo , Glicoconjugados/biosíntesis , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Ingeniería de Proteínas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Dolicoles/análogos & derivados , Dolicoles/química , Glicoconjugados/química , Glicoconjugados/metabolismo , Glicosilación , Hexosiltransferasas/química , Cinética , Proteínas de la Membrana/química , Modelos Moleculares , Péptidos/química , Especificidad por Sustrato
9.
J Infect Dis ; 209(10): 1551-61, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24308931

RESUMEN

BACKGROUND: Staphylococcus aureus is a leading cause of superficial and invasive human disease that is often refractory to antimicrobial therapy. Vaccines have the potential to reduce the morbidity, mortality, and economic impact associated with staphylococcal infections. However, single-component vaccines targeting S. aureus have failed to show efficacy in clinical trials. METHODS: A novel glycoengineering technology for creation of a multicomponent staphylococcal vaccine is described. Genes encoding S. aureus capsular polysaccharide (CP) biosynthesis, PglB (a Campylobacter oligosaccharyl transferase), and a protein carrier (detoxified Pseudomonas aeruginosa exoprotein A or S. aureus α toxin [Hla]) were coexpressed in Escherichia coli. Recombinant proteins N-glycosylated with S. aureus serotype 5 or 8 CPs were purified from E. coli. RESULTS: Rabbits and mice immunized with the glycoprotein vaccines produced antibodies that were active in vitro in functional assays. Active and passive immunization strategies targeting the CPs protected mice against bacteremia, and vaccines targeting Hla protected against lethal pneumonia. The CP-Hla bioconjugate vaccine protected against both bacteremia and lethal pneumonia, providing broad-spectrum efficacy against staphylococcal invasive disease. CONCLUSIONS: Glycoengineering technology, whereby polysaccharide and protein antigens are enzymatically linked in a simple E. coli production system, has broad applicability for use in vaccine development against encapsulated microbial pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Glicoproteínas/inmunología , Infecciones Estafilocócicas/prevención & control , Vacunas Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Glicoconjugados/inmunología , Glicoproteínas/metabolismo , Humanos , Ratones , Conejos , Infecciones Estafilocócicas/microbiología , Vacunas Estafilocócicas/metabolismo , Vacunas Sintéticas
10.
Glycoconj J ; 30(5): 511-22, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23053636

RESUMEN

State-of-the-art production technologies for conjugate vaccines are complex, multi-step processes. An alternative approach to produce glycoconjugates is based on the bacterial N-linked protein glycosylation system first described in Campylobacter jejuni. The C. jejuni N-glycosylation system has been successfully transferred into Escherichia coli, enabling in vivo production of customized recombinant glycoproteins. However, some antigenic bacterial cell surface polysaccharides, like the Vi antigen of Salmonella enterica serovar Typhi, have not been reported to be accessible to the bacterial oligosaccharyltransferase PglB, hence hamper development of novel conjugate vaccines against typhoid fever. In this report, Vi-like polysaccharide structures that can be transferred by PglB were evaluated as typhoid vaccine components. A polysaccharide fulfilling these requirements was found in Escherichia coli serovar O121. Inactivation of the E. coli O121 O antigen cluster encoded gene wbqG resulted in expression of O polysaccharides reactive with antibodies raised against the Vi antigen. The structure of the recombinantly expressed mutant O polysaccharide was elucidated using a novel HPLC and mass spectrometry based method for purified undecaprenyl pyrophosphate (Und-PP) linked glycans, and the presence of epitopes also found in the Vi antigen was confirmed. The mutant O antigen structure was transferred to acceptor proteins using the bacterial N-glycosylation system, and immunogenicity of the resulting conjugates was evaluated in mice. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with E. coli O121 LPS. One animal developed a significant rise in serum immunoglobulin anti-Vi titer upon immunization.


Asunto(s)
Hexosiltransferasas/inmunología , Proteínas de la Membrana/inmunología , Antígenos O/inmunología , Polisacáridos Bacterianos/inmunología , Salmonella typhi/efectos de los fármacos , Fiebre Tifoidea/prevención & control , Vacunas Tifoides-Paratifoides/inmunología , Animales , Anticuerpos Antibacterianos/biosíntesis , Campylobacter jejuni/química , Campylobacter jejuni/genética , Campylobacter jejuni/inmunología , Secuencia de Carbohidratos , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/inmunología , Femenino , Glicoconjugados/química , Glicoconjugados/inmunología , Glicosilación , Hexosiltransferasas/química , Hexosiltransferasas/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Datos de Secuencia Molecular , Antígenos O/química , Antígenos O/genética , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/genética , Ingeniería de Proteínas , Salmonella typhi/inmunología , Salmonella typhi/patogenicidad , Fiebre Tifoidea/inmunología , Fiebre Tifoidea/microbiología , Vacunas Tifoides-Paratifoides/administración & dosificación , Vacunas Tifoides-Paratifoides/química , Vacunas Tifoides-Paratifoides/genética , Vacunas Conjugadas
11.
PLoS One ; 7(9): e45609, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029132

RESUMEN

The Vi capsular polysaccharide (CPS) of Salmonella enterica serovar Typhi, the cause of human typhoid, is important for infectivity and virulence. The Vi biosynthetic machinery is encoded within the viaB locus composed of 10 genes involved in regulation of expression (tviA), polymer synthesis (tviB-tviE), and cell surface localization of the CPS (vexA-vexE). We cloned the viaB locus from S. Typhi and transposon insertion mutants of individual viaB genes were characterized in Escherichia coli DH5α. Phenotype analysis of viaB mutants revealed that tviB, tviC, tviD and tviE are involved in Vi polymer synthesis. Furthermore, expression of tviB-tviE in E. coli DH5α directed the synthesis of cytoplasmic Vi antigen. Mutants of the ABC transporter genes vexBC and the polysaccharide copolymerase gene vexD accumulated the Vi polymer within the cytoplasm and productivity in these mutants was greatly reduced. In contrast, de novo synthesis of Vi polymer in the export deficient vexA mutant was comparable to wild-type cells, with drastic effects on cell stability. VexE mutant cells exported the Vi, but the CPS was not retained at the cell surface. The secreted polymer of a vexE mutant had different physical characteristics compared to the wild-type Vi.


Asunto(s)
Genes Bacterianos , Polisacáridos Bacterianos/genética , Salmonella typhi/genética , Secuencia de Carbohidratos , Escherichia coli/genética , Mutación , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/metabolismo , Salmonella typhi/metabolismo , Salmonella typhi/patogenicidad , Virulencia
12.
BMC Biotechnol ; 12: 67, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23006740

RESUMEN

BACKGROUND: Protein glycosylation is of fundamental importance in many biological systems. The discovery of N-glycosylation in bacteria and the functional expression of the N-oligosaccharyltransferase PglB of Campylobacter jejuni in Escherichia coli enabled the production of engineered glycoproteins and the study of the underlying molecular mechanisms. A particularly promising application for protein glycosylation in recombinant bacteria is the production of potent conjugate vaccines where polysaccharide antigens of pathogenic bacteria are covalently bound to immunogenic carrier proteins. RESULTS: In this study capsular polysaccharides of the clinically relevant pathogen Staphylococcus aureus serotype 5 (CP5) were expressed in Escherichia coli and linked in vivo to a detoxified version of Pseudomonas aeruginosa exotoxin (EPA). We investigated which amino acids of the periplasmic domain of PglB are crucial for the glycosylation reaction using a newly established 96-well screening system enabling the relative quantification of glycoproteins by enzyme-linked immunosorbent assay. A random mutant library was generated by error-prone PCR and screened for inactivating amino acid substitutions. In addition to 15 inactive variants with amino acid changes within the previously known, strictly conserved WWDYG motif of N-oligosaccharyltransferases, 8 inactivating mutations mapped to a flexible loop in close vicinity of the amide nitrogen atom of the acceptor asparagine as revealed in the crystal structure of the homologous enzyme C. lari PglB. The importance of the conserved loop residue H479 for glycosylation was confirmed by site directed mutagenesis, while a change to alanine of the adjacent, non-conserved L480 had no effect. In addition, we investigated functional requirements in the so-called MIV motif of bacterial N-oligosaccharyltransferases. Amino acid residues I571 and V575, which had been postulated to interact with the acceptor peptide, were subjected to cassette saturation mutagenesis. With the exception of I571C only hydrophobic residues were found in active variants. Variant I571V performed equally well as the wild type, cysteine at the same position reduced glycoprotein yield slightly, while a change to phenylalanine reduced activity by a factor of three. CONCLUSIONS: This study provides novel structure-function relationships for the periplasmic domain of the Campylobacter jejuni N-oligosaccharyltransferase PglB and describes procedures for generating and screening oligosaccharyltransferase mutant libraries in an engineered E. coli system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/enzimología , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/metabolismo , Glicosilación , Hexosiltransferasas/química , Hexosiltransferasas/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
13.
Glycobiology ; 21(1): 45-54, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20847188

RESUMEN

A number of proteobacteria carry the genetic information to perform N-linked glycosylation, but only the protein glycosylation (pgl) pathway of Campylobacter jejuni has been studied to date. Here, we report that the pgl gene cluster of Campylobacter lari encodes for a functional glycosylation machinery that can be reconstituted in Escherichia coli. We determined that the N-glycan produced in this system consisted of a linear hexasaccharide. We found that the oligosaccharyltransferase (OST) of C. lari conserved a predominant specificity for the primary sequence D/E-X(-1)-N-X(+1)-S/T (where X(-1) and X(+1) can be any amino acid but proline). At the same time, we observed that this enzyme exhibited a relaxed specificity toward the acceptor site and modified asparagine residues of a protein at sequences DANSG and NNNST. Moreover, C. lari pgl glycosylated a native E. coli protein. Bacterial N-glycosylation appears as a useful tool to establish a molecular description of how single-subunit OSTs perform selection of glycosyl acceptor sites.


Asunto(s)
Campylobacter jejuni/enzimología , Hexosiltransferasas/química , Proteínas de la Membrana/química , Campylobacter lari/enzimología , Escherichia coli/enzimología , Glicosilación , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo
14.
Microb Cell Fact ; 9: 61, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20701771

RESUMEN

BACKGROUND: Conjugate vaccines in which polysaccharide antigens are covalently linked to carrier proteins belong to the most effective and safest vaccines against bacterial pathogens. State-of-the art production of conjugate vaccines using chemical methods is a laborious, multi-step process. In vivo enzymatic coupling using the general glycosylation pathway of Campylobacter jejuni in recombinant Escherichia coli has been suggested as a simpler method for producing conjugate vaccines. In this study we describe the in vivo biosynthesis of two novel conjugate vaccine candidates against Shigella dysenteriae type 1, an important bacterial pathogen causing severe gastro-intestinal disease states mainly in developing countries. RESULTS: Two different periplasmic carrier proteins, AcrA from C. jejuni and a toxoid form of Pseudomonas aeruginosa exotoxin were glycosylated with Shigella O antigens in E. coli. Starting from shake flask cultivation in standard complex medium a lab-scale fed-batch process was developed for glycoconjugate production. It was found that efficiency of glycosylation but not carrier protein expression was highly susceptible to the physiological state at induction. After induction glycoconjugates generally appeared later than unglycosylated carrier protein, suggesting that glycosylation was the rate-limiting step for synthesis of conjugate vaccines in E. coli. Glycoconjugate synthesis, in particular expression of oligosaccharyltransferase PglB, strongly inhibited growth of E. coli cells after induction, making it necessary to separate biomass growth and recombinant protein expression phases. With a simple pulse and linear feed strategy and the use of semi-defined glycerol medium, volumetric glycoconjugate yield was increased 30 to 50-fold. CONCLUSIONS: The presented data demonstrate that glycosylated proteins can be produced in recombinant E. coli at a larger scale. The described methodologies constitute an important step towards cost-effective in vivo production of conjugate vaccines, which in future may be used for combating severe infectious diseases, particularly in developing countries.


Asunto(s)
Escherichia coli/genética , Vacunas contra la Shigella/biosíntesis , Shigella dysenteriae/inmunología , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicoproteínas , Glicosilación , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Antígenos O/biosíntesis , Antígenos O/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunas Conjugadas/biosíntesis
15.
J Am Chem Soc ; 131(3): 1274-81, 2009 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-19154179

RESUMEN

Although there is great interest in three-dimensional structures of glycoproteins and complex oligosaccharides, their structural determination have been hampered by inhomogeneous and incomplete glycosylation, poor expression, low tendency to crystallize, and severe chemical shift overlap. Using segmental labeling of the glycan and the protein component by in vitro glycosylation, we developed a novel method of NMR structural determination that overcomes some of these problems. Highly homogeneously glycosylated proteins in milligram amounts can be obtained. This allowed the determination of the structure of an N-linked glycoprotein from Campylobacter jejuni. The glycosylation acceptor site was found to be in a flexible loop. The presented methodology extends the observable NOE distance limit of oligosaccharides significantly over 4 A, resulting in a high number of distance restraints per glycosidic linkage. A well-defined glycan structure was obtained.


Asunto(s)
Glicoproteínas/análisis , Glicoproteínas/química , Espectroscopía de Resonancia Magnética/métodos , Secuencia de Aminoácidos , Campylobacter jejuni/química , Glicosilación , Modelos Moleculares , Estructura Terciaria de Proteína , Estereoisomerismo
16.
Science ; 314(5802): 1148-50, 2006 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-17110579

RESUMEN

N-linked protein glycosylation is found in all domains of life. In eukaryotes, it is the most abundant protein modification of secretory and membrane proteins, and the process is coupled to protein translocation and folding. We found that in bacteria, N-glycosylation can occur independently of the protein translocation machinery. In an in vitro assay, bacterial oligosaccharyltransferase glycosylated a folded endogenous substrate protein with high efficiency and folded bovine ribonuclease A with low efficiency. Unfolding the eukaryotic substrate greatly increased glycosylation. We propose that in the bacterial system, glycosylation sites are located in flexible parts of folded proteins, whereas the eukaryotic cotranslational glycosylation evolved to a mechanism presenting the substrate in a flexible form before folding.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Animales , Campylobacter jejuni , Bovinos , Escherichia coli , Glicosilación , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , Proteínas Recombinantes/metabolismo
17.
EMBO J ; 25(9): 1957-66, 2006 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-16619027

RESUMEN

The Campylobacter jejuni pgl locus encodes an N-linked protein glycosylation machinery that can be functionally transferred into Escherichia coli. In this system, we analyzed the elements in the C. jejuni N-glycoprotein AcrA required for accepting an N-glycan. We found that the eukaryotic primary consensus sequence for N-glycosylation is N terminally extended to D/E-Y-N-X-S/T (Y, X not equalP) for recognition by the bacterial oligosaccharyltransferase (OST) PglB. However, not all consensus sequences were N-glycosylated when they were either artificially introduced or when they were present in non-C. jejuni proteins. We were able to produce recombinant glycoproteins with engineered N-glycosylation sites and confirmed the requirement for a negatively charged side chain at position -2 in C. jejuni N-glycoproteins. N-glycosylation of AcrA by the eukaryotic OST in Saccharomyces cerevisiae occurred independent of the acidic residue at the -2 position. Thus, bacterial N-glycosylation site selection is more specific than the eukaryotic equivalent with respect to the polypeptide acceptor sequence.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Secuencia de Aminoácidos/genética , Sustitución de Aminoácidos/genética , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Secuencia de Consenso/genética , Glicoproteínas/genética , Glicosilación , Hexosiltransferasas/metabolismo , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Saccharomyces cerevisiae/metabolismo
18.
Proc Natl Acad Sci U S A ; 103(18): 7088-93, 2006 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-16641107

RESUMEN

The PglB oligosaccharyltransferase (OTase) of Campylobacter jejuni can be functionally expressed in Escherichia coli, and its relaxed oligosaccharide substrate specificity allows the transfer of different glycans from the lipid carrier undecaprenyl pyrophosphate to an acceptor protein. To investigate the substrate specificity of PglB, we tested the transfer of a set of lipid-linked polysaccharides in E. coli and Salmonella enterica serovar Typhimurium. A hexose linked to the C-6 of the monosaccharide at the reducing end did not inhibit the transfer of the O antigen to the acceptor protein. However, PglB required an acetamido group at the C-2. A model for the mechanism of PglB involving this functional group was proposed. Previous experiments have shown that eukaryotic OTases have the same requirement, suggesting that eukaryotic and prokaryotic OTases catalyze the transfer of oligosaccharides by a conserved mechanism. Moreover, we demonstrated the functional transfer of the C. jejuni glycosylation system into S. enterica. The elucidation of the mechanism of action and the substrate specificity of PglB represents the foundation for engineering glycoproteins that will have an impact on biotechnology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/enzimología , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos/metabolismo , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico/fisiología , Conformación de Carbohidratos , Secuencia de Carbohidratos , Glicosilación , Hexosiltransferasas/genética , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Estructura Molecular , Salmonella enterica/metabolismo , Especificidad por Sustrato
19.
EMBO J ; 24(9): 1730-8, 2005 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-15861139

RESUMEN

UDP-glucose:glycoprotein glucosyltransferase (GT) is a key component of the glycoprotein-specific folding and quality control system in the endoplasmic reticulum. By exclusively reglucosylating incompletely folded and assembled glycoproteins, it serves as a folding sensor that prolongs the association of newly synthesized glycoproteins with the chaperone-like lectins calnexin and calreticulin. Here, we address the mechanism by which GT recognizes and labels its substrates. Using an improved inhibitor assay based on soluble conformers of pancreatic ribonuclease in its glycosylated (RNase B) and unglycosylated (RNase A) forms, we found that the protein moiety of a misfolded conformer alone is sufficient for specific recognition by GT in vitro. To investigate the relationship between recognition and glucosylation, we tested a variety of glycosylation mutants of RNase S-Protein and an RNase mutant with a local folding defect [RNase C65S, C72S], as well as a series of loop insertion mutants. The results indicated that local folding defects in an otherwise correctly folded domain could be recognized by GT. Only glycans attached to the polypeptide within the misfolded sites were glucosylated.


Asunto(s)
Glucosiltransferasas/metabolismo , Glicoproteínas/metabolismo , Pliegue de Proteína , Ribonucleasa Pancreática/metabolismo , Ribonucleasas/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Glucosiltransferasas/antagonistas & inhibidores , Glicoproteínas/química , Mutación , ARN Mensajero , Ribonucleasa Pancreática/genética , Ribonucleasas/genética , Especificidad por Sustrato
20.
Proc Natl Acad Sci U S A ; 102(8): 3016-21, 2005 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-15703289

RESUMEN

Campylobacter jejuni has a general N-linked protein glycosylation system that can be functionally transferred to Escherichia coli. In this study, we engineered E. coli cells in a way that two different pathways, protein N-glycosylation and lipopolysaccharide (LPS) biosynthesis, converge at the step in which PglB, the key enzyme of the C. jejuni N-glycosylation system, transfers O polysaccharide from a lipid carrier (undecaprenyl pyrophosphate) to an acceptor protein. PglB was the only protein of the bacterial N-glycosylation machinery both necessary and sufficient for the transfer. The relaxed specificity of the PglB oligosaccharyltransferase toward the glycan structure was exploited to create novel N-glycan structures containing two distinct E. coli or Pseudomonas aeruginosa O antigens. PglB-mediated transfer of polysaccharides might be valuable for in vivo production of O polysaccharides-protein conjugates for use as antibacterial vaccines.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hexosiltransferasas/fisiología , Proteínas de la Membrana/fisiología , Antígenos O/metabolismo , Vacunas Bacterianas/inmunología , Glicosilación , Hexosiltransferasas/genética , Lipopolisacáridos/biosíntesis , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana , Ingeniería de Proteínas , Vacunas Conjugadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...