Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Phys Med ; 118: 103215, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38224662

RESUMEN

PURPOSE: Organ dose evaluation is important for optimizing cone beam computed tomography (CBCT) scan protocols. However, an evaluation method for various CBCT scanners is yet to be established. In this study, we developed scanner-independent conversion coefficients to estimate organ doses using appropriate peak dose (f(0)) indices. METHODS: This study included various scanners (angiography scanners and linear accelerators) and protocols for the head and body (thorax, abdomen, and pelvis) scan regions. f(0) was measured at five conventional positions (center position (f(0)c) and four peripheral positions (f(0)p) at 90° intervals) in the CT dose index (CTDI) phantom. To identify appropriate measurement positions for organ dose estimation, various f(0) indices were considered. Organ doses were measured by using optically stimulated luminescence dosimeters positioned in an anthropomorphic phantom. Thereafter, the conversion coefficients were calculated from each obtained f(0) value and organ or tissue dose using a linear fit for all scanners, and the coefficient of variation (CV) of the conversion coefficients was calculated for each organ or tissue. The f(0) index with the minimum CV value was proposed as the appropriate index. RESULTS: The appropriate f(0) index was determined as f(0)c for the body region and a maximum of four f(0)p values for the head region. Using the proposed conversion coefficients based on the appropriate f(0) index, the organ/tissue doses were well estimated with a mean error of 14.2% across all scanners and scan regions. CONCLUSIONS: The proposed scanner-independent coefficients are useful for organ dose evaluation using CBCT scanners.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Cabeza , Dosis de Radiación , Método de Montecarlo , Tomografía Computarizada de Haz Cónico/métodos , Cabeza/diagnóstico por imagen , Fantasmas de Imagen , Radiometría/métodos
2.
Artículo en Japonés | MEDLINE | ID: mdl-37730318
3.
Radiat Prot Dosimetry ; 198(20): 1585-1597, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36321327

RESUMEN

The International Commission on Radiological Protection (ICRP) 118th recommendation significantly reduced the threshold dose for cataract development from 8 to 0.5 Gy. Equivalent dose limits for the crystalline lenses of radiation workers are being reviewed for individual countries. Interventional radiology (IR) procedures are less invasive than surgery and have become widespread; however, there are concerns about exposure not only to patients but also to staff, including operators. Therefore, in this study, we used a human phantom to measure the near-lens dose of the operators (cardiologists, neurosurgeons and radiologists) and estimated the operator's lens dose for every major procedure in each clinical department; this was found to vary. Owing to the different imaging and fluoroscopy conditions of each department, and the varying ratio of fluoroscopy to radiography, it is necessary to measure the lens dose for each condition, as in this study. In addition, this study explains the differences between the protective effect of various safety equipment and the appropriate use of protective plates; it can contribute to the reduction of lens doses for operators.

4.
Radiol Phys Technol ; 15(4): 298-310, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35960494

RESUMEN

In multisite studies, differences in imaging acquisition systems could affect the reproducibility of the results when examining changes in brain function using resting-state functional magnetic resonance imaging (rs-fMRI). This is also important for longitudinal studies, in which changes in equipment settings can occur. This study examined the reproducibility of functional connectivity (FC) metrics estimated from rs-fMRI data acquired using scanner receiver coils with different numbers of channels. This study involved 80 rs-fMRI datasets from 20 healthy volunteers scanned in two independent imaging sessions using both 12- and 32-channel coils for each session. We used independent component analysis (ICA) to evaluate the FC of canonical resting-state networks (RSNs) and graph theory to calculate several whole-brain network metrics. The effect of global signal regression (GSR) as a preprocessing step was also considered. Comparisons within and between receiver coils were performed. Irrespective of the GSR, RSNs derived from rs-fMRI data acquired using the same receiver coil were reproducible, but not from different receiver coils. However, both the GSR and the channel count of the receiver coil have discernible effects on the reproducibility of network metrics estimated using whole-brain network analysis. The data acquired using the 32-channel coil tended to have better reproducibility than those acquired using the 12-channel coil. Our findings suggest that the reproducibility of FC metrics estimated from rs-fMRI data acquired using different receiver coils showed some level of dependence on the preprocessing method and the type of analysis performed.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Humanos , Mapeo Encefálico/métodos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Voluntarios Sanos
5.
Neuroimage ; 257: 119263, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35500805

RESUMEN

Accumulating evidence from anatomical and neuroimaging studies suggests that the cerebellum is engaged in a variety of motor and cognitive tasks. Given its various functions, a key question is whether the cerebellum also plays an important role in the brain's integrative functions. Here, we hypothesize the existence of connector regions, also known as connector hubs, where multiple resting state networks converged in the cerebellum. To verify this, we employed a recently developed voxel-level network measure called functional connectivity overlap ratio (FCOR), which could be used to quantify the spatial extent of a region's connection to several large-scale cortical networks. Using resting state functional MRI data from 101 healthy participants, cerebellar FCOR maps were constructed and used to identify the locations of connector hubs in the cerebellum. Results showed that a number of cerebellar regions exhibited strong connectivity with multiple functional networks, verifying our hypothesis. These highly connected regions were located in the posterior cerebellum, especially in lobules VI, VII, and IX, and mainly connected to the core neurocognitive networks such as default mode and executive control networks. Regions associated with the sensorimotor network were also localized in lobule V, VI, and VIII, albeit in small clusters. These cerebellar connector hubs may play an essential role in the processing of information across the core neurocognitive networks.


Asunto(s)
Cerebelo , Imagen por Resonancia Magnética , Cerebelo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Neuroimagen
6.
eNeuro ; 9(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35045976

RESUMEN

The aging brain undergoes structural changes even in very healthy individuals. Quantifying these changes could help disentangle pathologic changes from those associated with the normal human aging process. Using longitudinal magnetic resonance imaging (MRI) data from 227 carefully selected healthy human cohort with age ranging from 50 to 80 years old at baseline scan, we quantified age-related volumetric changes in the brain of healthy human older adults. Longitudinally, the rates of tissue loss in total gray matter (GM) and white matter (WM) were 2497.5 and 2579.8 mm3 per year, respectively. Across the whole brain, the rates of GM decline varied with regions in the frontal and parietal lobes having faster rates of decline, whereas some regions in the occipital and temporal lobes appeared relatively preserved. In contrast, cross-sectional changes were mainly observed in the temporal-occipital regions. Similar longitudinal atrophic changes were also observed in subcortical regions including thalamus, hippocampus, putamen, and caudate, whereas the pallidum showed an increasing volume with age. Overall, regions maturing late in development (frontal, parietal) are more vulnerable to longitudinal decline, whereas those that fully mature in the early stage (temporal, occipital) are mainly affected by cross-sectional changes in healthy older cohort. This may suggest that, for a successful healthy aging, the former needs to be maximally developed at an earlier age to compensate for the longitudinal decline later in life and the latter to remain relatively preserved even in old age, consistent with both concepts of reserve and brain maintenance.


Asunto(s)
Envejecimiento , Encéfalo , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios Transversales , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad
7.
iScience ; 24(10): 103106, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34622159

RESUMEN

The thalamus is critical for the brain's integrative hub functions; however, the localization and characterization of the different thalamic hubs remain unclear. Using a voxel-level network measure called functional connectivity overlap ratio (FCOR), we examined the thalamus' association with large-scale resting-state networks (RSNs) to elucidate its connector hub roles. Connections to the core-neurocognitive networks were localized in the anterior and medial parts, such as the anteroventral and mediodorsal nuclei areas. Regions functionally connected to the sensorimotor network were distinctively located around the lateral pulvinar nucleus but to a limited extent. Prominent connector hubs include the anteroventral, ventral lateral, and mediodorsal nuclei with functional connections to multiple RSNs. These findings suggest that the thalamus, with extensive connections to most of the RSNs, is well placed as a critical integrative functional hub and could play an important role for functional integration facilitating brain functions associated with primary processing and higher cognition.

8.
Nagoya J Med Sci ; 83(2): 277-286, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34239176

RESUMEN

Distribution of radiation by C-arm cone-beam computed tomography (CBCT) in the angiographic suite and effectiveness of protection devices were assessed. CBCT image of a human phantom was obtained by a rotation of 220 degrees during 8 seconds of exposure. One hundred and twelve dosimeters were placed at different positions around the beam entry site, and color maps of dose distributions were drawn for horizontal and vertical planes. The measurements showed the highest radiation dose over 600 µGy by a single CBCT image acquisition at a distance of 60 cm from the beam entry site and a height of 90 cm from the floor. The color maps demonstrated the dose distribution to be more intense at the bilateral directions of the phantom. With the use of a ceiling-mounted transparent lead-acryl screen and a table-suspended lead curtain, the doses were reduced by 45-92 % at a direction of 210 degrees and a distance of 120 cm.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Humanos , Fantasmas de Imagen , Dosis de Radiación , Dispersión de Radiación
9.
Phys Med ; 81: 130-140, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33453505

RESUMEN

PURPOSE: The conventional weighted computed tomography dose index (CTDIw) may not be suitable for cone-beam computed tomography (CBCT) dosimetry because a cross-sectional dose distribution is angularly inhomogeneous owing to partial angle irradiations. This study was conducted to develop a new dose metric (f(0)CBw) for CBCT dosimetry to determine a more accurate average dose in the central cross-sectional plane of a cylindrical phantom using Monte Carlo simulations. METHODS: First, cross-sectional dose distributions of cylindrical polymethyl methacrylate phantoms over a wide range of phantom diameters (8-40 cm) were calculated for various CBCT scan protocols. Then, by obtaining linear least-squares fits of the full datasets of the cross-sectional dose distributions, the optimal radial positions, which represented measurement positions for the average phantom dose, were determined. Finally, the f(0)CBw method was developed by averaging point doses at the optimal radial positions of the phantoms. To demonstrate its validity, the relative differences between the average doses and each dose index value were estimated for the devised f(0)CBw, conventional CTDIw, and Haba's CTDIw methods, respectively. RESULTS: The relative differences between the average doses and each dose index value were within 4.1%, 16.7%, and 11.9% for the devised, conventional CTDIw, and Haba's CTDIw methods, respectively. CONCLUSIONS: The devised f(0)CBw value was calculated by averaging four "point doses" at 90° intervals and the optimal radial positions of the cylindrical phantom. The devised method can estimate the average dose more accurately than the previously developed CTDIw methods for CBCT dosimetry.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Radiometría , Estudios Transversales , Método de Montecarlo , Fantasmas de Imagen , Dosis de Radiación
10.
Magn Reson Med Sci ; 20(4): 338-346, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33115986

RESUMEN

PURPOSE: The estimation of functional connectivity (FC) measures using resting state functional MRI (fMRI) is often affected by head motion during functional imaging scans. Head motion is more common in the elderly than in young participants and could therefore affect the evaluation of age-related changes in brain networks. Thus, this study aimed to investigate the influence of head motion in FC estimation when evaluating age-related changes in brain networks. METHODS: This study involved 132 healthy volunteers divided into 3 groups: elderly participants with high motion (OldHM, mean age (±SD) = 69.6 (±5.31), N = 44), elderly participants with low motion (OldLM, mean age (±SD) = 68.7 (±4.59), N = 43), and young adult participants with low motion (YugLM, mean age (±SD) = 27.6 (±5.26), N = 45). Head motion was quantified using the mean of the framewise displacement of resting state fMRI data. After preprocessing all resting state fMRI datasets, several resting state networks (RSNs) were extracted using independent component analysis (ICA). In addition, several network metrics were also calculated using network analysis. These FC measures were then compared among the 3 groups. RESULTS: In ICA, the number of voxels with significant differences in RSNs was higher in YugLM vs. OldLM comparison than in YugLM vs. OldHM. In network analysis, all network metrics showed significant (P < 0.05) differences in comparisons involving low vs. high motion groups (OldHM vs. OldLM and OldHM vs. YugLM). However, there was no significant (P > 0.05) difference in the comparison involving the low motion groups (OldLM vs. YugLM). CONCLUSION: Our findings showed that head motion during functional imaging could significantly affect the evaluation of age-related brain network changes using resting state fMRI data.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Anciano , Encéfalo/diagnóstico por imagen , Cabeza/diagnóstico por imagen , Humanos , Movimiento (Física) , Adulto Joven
11.
Oral Radiol ; 37(3): 412-420, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32812125

RESUMEN

OBJECTIVE: The computed tomography cortical index (CTCI), computed tomography mandibular index (CTMI), and computed tomography index (inferior) [CTI(I)] are indexes obtained from cone-beam computed tomography images for the assessment of the mandibular cortex quality for implant planning or osteoporosis. However, cross-sectional image reconstruction for the measurements is labor-intensive. This study aimed to develop and evaluate a method to automatically reconstruct cross-sectional images and measure the cortex width in all areas inferior to the mental foramen (MF). METHODS: Seventy-one women (mean age: 52.4 years; range: 20-78 years) were enrolled. They were divided into four age and CTCI groups, including females younger (FY) and females older (FO) than 50 years (C1: normal, C2: mild/moderate erosion, and C3: severe porosity). Automatic and manual measurements of CTMI and CTI(I) were compared, and the inter- and intraobserver agreements were assessed using the intraclass correlation coefficient (ICC). The relationships between CTMI or CTI(I) and CTCI were also assessed. RESULTS: The mean processing times for reconstruction and measurements were 31.9 s and 1.22 s, respectively. ICCs for the comparison of automatic and manual measurements were 0.932 and 0.993 in the C1 and C2/C3 groups, respectively. Significant differences in CTMI and CTI(I) were observed between the FY or the FO-C1 and FO-C3 groups (p < 0.05). CONCLUSION: The automatic and manual measurements showed a strong agreement. The new method could drastically reduce routine clinical workload. Additionally, our method enables the measurement of the cortex width in all the mandibular bones inferior to the MF.


Asunto(s)
Mandíbula , Osteoporosis , Tomografía Computarizada de Haz Cónico , Hueso Cortical/diagnóstico por imagen , Estudios Transversales , Femenino , Humanos , Mandíbula/diagnóstico por imagen , Persona de Mediana Edad
12.
Front Aging Neurosci ; 12: 592469, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192489

RESUMEN

Recent studies have demonstrated that connector hubs, regions considered critical for the flow of information across neural systems, are mostly involved in neurodegenerative dementia. Considering that aging can significantly affect the brain's intrinsic connectivity, identifying aging's impact on these regions' overall connection strength is important to differentiate changes associated with healthy aging from neurodegenerative disorders. Using resting state functional magnetic resonance imaging data from a carefully selected cohort of 175 healthy volunteers aging from 21 to 86 years old, we computed an intrinsic connectivity contrast (ICC) metric, which quantifies a region's overall connectivity strength, for whole brain, short-range, and long-range connections and examined age-related changes of this metric over the adult lifespan. We have identified a limited number of hub regions with ICC values that showed significant negative relationship with age. These include the medial precentral/midcingulate gyri and insula with both their short-range and long-range (and thus whole-brain) ICC values negatively associated with age, and the angular, middle frontal, and posterior cingulate gyri with their long-range ICC values mainly involved. Seed-based connectivity analyses further confirmed that these regions are connector hubs with connectivity profile that strongly overlapped with multiple large-scale brain networks. General cognitive performance was not associated with these hubs' ICC values. These findings suggest that even healthy aging could negatively impact the efficiency of regions critical for facilitating information transfer among different functional brain networks. The extent of the regions involved, however, was limited.

13.
Neuroimage ; 222: 117241, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798679

RESUMEN

Neuroimaging studies have shown that the brain is functionally organized into several large-scale brain networks. Within these networks are regions that are widely connected to several other regions within and/or outside the network. Regions that connect to several other networks, known as connector hubs, are believed to be crucial for information transfer and between-network communication within the brain. To identify regions with high between-network connectivity at the voxel level, we introduced a novel metric called functional connectivity overlap ratio (FCOR), which quantifies the spatial extent of a region's connection to a given network. Using resting state functional magnetic resonance imaging data, FCOR maps were generated for several well-known large-scale resting state networks (RSNs) and used to examine the relevant associations among different RSNs, identify connector hub regions in the cerebral cortex, and elucidate the hierarchical functional organization of the brain. Constructed FCOR maps revealed a strong association among the core neurocognitive networks (default mode, salience, and executive control) as well as among primary processing networks (sensorimotor, auditory, and visual). Prominent connector hubs were identified in the bilateral middle frontal gyrus, posterior cingulate, lateral parietal, middle temporal, dorsal anterior cingulate, and anterior insula, among others, regions mostly associated with the core neurocognitive networks. Finally, clustering the whole brain using FCOR features yielded a topological organization that arranges brain regions into a hierarchy of information processing systems with the primary processing systems at one end and the heteromodal systems comprising connector hubs at the other end.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Adulto , Corteza Cerebral/fisiología , Función Ejecutiva , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
14.
Radiat Prot Dosimetry ; 189(4): 489-496, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32440690

RESUMEN

Estimating organ absorbed doses in consideration of person-specific parameters is important for radiation protection in diagnostic nuclear medicine. This study proposes a straightforward method for estimating the organ dose that reflects a specific organ mass by scaling the reference organ dose using the inverse ratio of the specific organ mass to the reference organ mass. For the administration of radiopharmaceuticals labelled by 99mTc or 123I, the organ doses for the liver, spleen, red marrow and thyroid obtained by the method were compared with those generated by a Monte Carlo simulation. The discrepancies were less than 14% for the liver, spleen and thyroid. Conversely, in some cases, the red marrow discrepancies were greater than 30% due to the wide distribution of red marrow in the trunk and head regions. This study confirms that the method of scaling organ doses can be effective for estimating mass-specific doses for solid organs.


Asunto(s)
Radiofármacos , Simulación por Computador , Humanos , Método de Montecarlo , Fantasmas de Imagen , Dosis de Radiación
15.
Hum Brain Mapp ; 41(12): 3198-3211, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32304267

RESUMEN

White matter (WM) fiber bundles change dynamically with age. These changes could be driven by alterations in axonal diameter, axonal density, and myelin content. In this study, we applied a novel fixel-based analysis (FBA) framework to examine these changes throughout the adult lifespan. Using diffusion-weighted images from a cohort of 293 healthy volunteers (89 males/204 females) from ages 21 to 86 years old, we performed FBA to analyze age-related changes in microscopic fiber density (FD) and macroscopic fiber morphology (fiber cross section [FC]). Our results showed significant and widespread age-related alterations in FD and FC across the whole brain. Interestingly, some fiber bundles such as the anterior thalamic radiation, corpus callosum, and superior longitudinal fasciculus only showed significant negative relationship with age in FD values, but not in FC. On the other hand, some segments of the cerebello-thalamo-cortical pathway only showed significant negative relationship with age in FC, but not in FD. Analysis at the tract-level also showed that major fiber tract groups predominantly distributed in the frontal lobe (cingulum, forceps minor) exhibited greater vulnerability to the aging process than the others. Differences in FC and the combined measure of FD and cross section values observed between sexes were mostly driven by differences in brain sizes although male participants tended to exhibit steeper negative linear relationship with age in FD as compared to female participants. Overall, these findings provide further insights into the structural changes the brain's WM undergoes due to the aging process.


Asunto(s)
Envejecimiento/fisiología , Imagen de Difusión por Resonancia Magnética , Desarrollo Humano/fisiología , Fibras Nerviosas Mielínicas/fisiología , Sustancia Blanca/anatomía & histología , Sustancia Blanca/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Factores Sexuales , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
16.
J Digit Imaging ; 33(2): 531-537, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31625027

RESUMEN

In pulmonary angiography, the heartbeat creates artifacts that hinder extraction of blood vessel images in digital subtraction angiography. Remasking according to the cardiac phase of the angiogram may be effective but has yet to be automated. Here, automatic remasking was developed and assessed according to the cardiac phase from electrocardiographic information collected simultaneously with imaging. Manual remasking, fixed remasking, and our proposed automatic remasking were applied to 14 pulmonary angiography series from five participants with either chronic thromboembolic pulmonary hypertension or pulmonary arteriovenous malformation. The processing time and extent of artifacts from the heartbeat were compared. In addition, the peak signal-to-noise ratio (PSNR) was measured from differential images between mask image groups before the injection of the contrast medium to investigate optimal mask images. The mean time required for automatic remasking was 4.7 s/series, a significant reduction in processing time compared with the mean of 266 s/series for conventional manual processing. A visual comparison of the different approaches showed virtually no misregistration artifacts from the heartbeat in manual or automatic remasking according to cardiac phase. The results from measuring the PSNR for differential images between mask image groups also showed that smaller cardiac phase difference and time difference between two images ensure higher PSNR (p < 0.01). Automatic remasking according to the cardiac phase was fast and easy to implement and reduced misregistration artifacts from heartbeat.


Asunto(s)
Angiografía de Substracción Digital , Artefactos , Medios de Contraste , Humanos
17.
Artículo en Inglés | MEDLINE | ID: mdl-31811559

RESUMEN

Size-specific dose estimate (SSDE) was proposed by the American Association of Physicists in Medicine (AAPM) Task Group 204 to consider the effect of patient size in the x-ray CT dose estimation. Size correction factors to calculate SSDE were derived based on the conventional weighted CT dose index (CTDIw) equation. This study aims to investigate the influence of Bakalyar's and the authors' own CTDIw equations on the size correction factors described by the AAPM Task Group 204, using Monte Carlo simulations. The simulations were performed by modeling four types of x-ray CT scanner designs, to compute the dose values in water for cylindrical phantoms with 8-40 cm diameters. CTDI100 method and the AAPM Task Group 111's proposed method were employed as the CT dosimetry models. Size correction factors were obtained for the computed dose values of various phantom diameters for the conventional, Bakalyar's, and the authors' weighting factors. Maximum difference between the size correction factors for the Bakalyar's weighting factor and those of the AAPM Task Group 204 was 27% for a phantom diameter of 11.2 cm. On the other hand, the size correction factors calculated for the authors' weighting factor were in good agreement with those from the AAPM Task Group 204 report with a maximum difference of 17%. The results indicate that the SSDE values obtained with the authors' weighting factor can be evaluated by using the size correction factors reported by the AAPM Task Group 204, which is currently accepted as a standard.

18.
Sci Rep ; 9(1): 11352, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388057

RESUMEN

Healthy aging is associated with structural and functional changes in the brain even in individuals who are free of neurodegenerative diseases. Using resting state functional magnetic resonance imaging data from a carefully selected cohort of participants, we examined cross sectional changes in the functional organization of several large-scale brain networks over the adult lifespan and its potential association with general cognitive performance. Converging results from multiple analyses at the voxel, node, and network levels showed widespread reorganization of functional brain networks with increasing age. Specifically, the primary processing (visual and sensorimotor) and visuospatial (dorsal attention) networks showed diminished network integrity, while the so-called core neurocognitive (executive control, salience, and default mode) and basal ganglia networks exhibited relatively preserved between-network connections. The visuospatial and precuneus networks also showed significantly more widespread increased connectivity with other networks. Graph analysis suggested that this reorganization progressed towards a more integrated network topology. General cognitive performance, assessed by Addenbrooke's Cognitive Examination-Revised total score, was positively correlated with between-network connectivity among the core neurocognitive and basal ganglia networks and the integrity of the primary processing and visuospatial networks. Mediation analyses further indicated that the observed association between aging and relative decline in cognitive performance could be mediated by changes in relevant functional connectivity measures. Overall, these findings provided further evidence supporting widespread age-related brain network reorganization and its potential association with general cognitive performance during healthy aging.


Asunto(s)
Envejecimiento , Encéfalo/fisiología , Cognición , Red Nerviosa , Vías Nerviosas , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Australas Phys Eng Sci Med ; 41(4): 847-852, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30151709

RESUMEN

X-ray image evaluation is commonly performed by determining the detective quantum efficiency (DQE). DQE is calculated with a presampled modulation transfer function (MTF), incident photon fluence, and digital noise power spectrum (NPS). Accurate evaluation of MTF, incident photon fluence, and NPS is important for precise DQE determination. In this study, we focused on the accuracy of the incident photon fluence in mammography. The incident photon fluence is calculated using the squared signal-to-noise ratio (SNRin2) value as specified in the International Electrotechnical Commission (IEC) 62220-1-2 report. However, the reported SNRin2 values were determined using a computer program, and the reported values may differ from those calculated from an X-ray spectrum that is measured with actual mammography equipment. Therefore, we evaluated the error range of reported SNRin2 values in mammography to assess the accuracy of the incident photon fluence. First, X-ray spectra from various mammography systems were measured with a CdTe spectrometer. Six mammographic X-ray units were used in this study. Second, the SNRin2 values were calculated from the measured X-ray spectra. The calculated values were compared to the reported values. The results show that the percentage differences between the calculated and reported SNRin2 values were within - 4.1% of each other. The results obtained in this study indicate that the SNRin2 values provided in the IEC report are a robust and convenient tool for calculating the incident photon fluence for DQE evaluation in mammography.


Asunto(s)
Mamografía/normas , Fotones , Aluminio , Compuestos de Cadmio , Diseño de Equipo , Mamografía/instrumentación , Mamografía/métodos , Reproducibilidad de los Resultados , Relación Señal-Ruido , Análisis Espectral , Telurio
20.
Front Hum Neurosci ; 12: 148, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29725294

RESUMEN

The stability of the MRI scanner throughout a given study is critical in minimizing hardware-induced variability in the acquired imaging data set. However, MRI scanners do malfunction at times, which could generate image artifacts and would require the replacement of a major component such as its gradient coil. In this article, we examined the effect of low intensity, randomly occurring hardware-related noise due to a faulty gradient coil on brain morphometric measures derived from T1-weighted images and resting state networks (RSNs) constructed from resting state functional MRI. We also introduced a method to detect and minimize the effect of the noise associated with a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric measures and RSNs before and after gradient coil replacement. Our results showed that gradient coil noise, even at relatively low intensities, could introduce a large number of voxels exhibiting spurious significant connectivity changes in several RSNs. However, censoring the affected volumes during the analysis could minimize, if not completely eliminate, these spurious connectivity changes and could lead to reproducible RSNs even after gradient coil replacement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...