Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 653: 123873, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38336179

RESUMEN

Scanning electron microscopy (SEM) images are the most widely used tool for evaluating particle morphology; however, quantitative evaluation using SEM images is time-consuming and often neglected. In this study, we aimed to extract features related to particle morphology of pharmaceutical excipients from SEM images using a convolutional neural network (CNN). SEM images of 67 excipients were acquired and used as models. A classification CNN model of the excipients was constructed based on the SEM images. Further, features were extracted from the middle layer of this CNN model, and the data was compressed to two dimensions using uniform manifold approximation and projection. Lastly, hierarchical clustering analysis (HCA) was performed to categorize the excipients into several clusters and identify similarities among the samples. The classification CNN model showed high accuracy, allowing each excipient to be identified with a high degree of accuracy. HCA revealed that the 67 excipients were classified into seven clusters. Additionally, the particle morphologies of excipients belonging to the same cluster were found to be very similar. These results suggest that CNN models are useful tools for extracting information and identifying similarities among the particle morphologies of excipients.


Asunto(s)
Excipientes , Redes Neurales de la Computación , Microscopía Electrónica de Rastreo
2.
J Chem Inf Model ; 63(23): 7392-7400, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37993764

RESUMEN

Molecular generation is crucial for advancing drug discovery, materials science, and chemical exploration. It expedites the search for new drug candidates, facilitates tailored material creation, and enhances our understanding of molecular diversity. By employing artificial intelligence techniques such as molecular generative models based on molecular graphs, researchers have tackled the challenge of identifying efficient molecules with desired properties. Here, we propose a new molecular generative model combining a graph-based deep neural network and a reinforcement learning technique. We evaluated the validity, novelty, and optimized physicochemical properties of the generated molecules. Importantly, the model explored uncharted regions of chemical space, allowing for the efficient discovery and design of new molecules. This innovative approach has considerable potential to revolutionize drug discovery, materials science, and chemical research for accelerating scientific innovation. By leveraging advanced techniques and exploring previously unexplored chemical spaces, this study offers promising prospects for the efficient discovery and design of new molecules in the field of drug development.


Asunto(s)
Inteligencia Artificial , Desarrollo de Medicamentos , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas , Aprendizaje , Método de Montecarlo
3.
J Chem Inf Model ; 63(15): 4552-4559, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37460105

RESUMEN

Identifying compound-protein interactions (CPIs) is crucial for drug discovery. Since experimentally validating CPIs is often time-consuming and costly, computational approaches are expected to facilitate the process. Rapid growths of available CPI databases have accelerated the development of many machine-learning methods for CPI predictions. However, their performance, particularly their generalizability against external data, often suffers from a data imbalance attributed to the lack of experimentally validated inactive (negative) samples. In this study, we developed a self-training method for augmenting both credible and informative negative samples to improve the performance of models impaired by data imbalances. The constructed model demonstrated higher performance than those constructed with other conventional methods for solving data imbalances, and the improvement was prominent for external datasets. Moreover, examination of the prediction score thresholds for pseudo-labeling during self-training revealed that augmenting the samples with ambiguous prediction scores is beneficial for constructing a model with high generalizability. The present study provides guidelines for improving CPI predictions on real-world data, thus facilitating drug discovery.


Asunto(s)
Aprendizaje Automático , Proteínas , Bases de Datos de Proteínas , Descubrimiento de Drogas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...