Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vet Res ; 66(1): 1-7, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35582478

RESUMEN

Introduction: Highly pathogenic avian influenza (HPAI) outbreaks caused by the Gs/Gd lineage of H5Nx viruses occur in Poland with increased frequency. The article provides an update on the HPAI situation in the 2020/2021 season and studies the possible factors that caused the exceptionally fast spread of the virus. Material and Methods: Samples from poultry and wild birds delivered for HPAI diagnosis were tested by real-time RT-PCR and a representative number of detected viruses were submitted for partial or full-genome characterisation. Information yielded by veterinary inspection was used for descriptive analysis of the epidemiological situation. Results: The scale of the epidemic in the 2020/2021 season was unprecedented in terms of duration (November 2020-August 2021), number of outbreaks in poultry (n = 357), wild bird events (n = 92) and total number of affected domestic birds (approximately ~14 million). The major drivers of the virus spread were the harsh winter conditions in February 2020 followed by the introduction of the virus to high-density poultry areas in March 2021. All tested viruses belonged to H5 clade 2.3.4.4b with significant intra-clade diversity and in some cases clearly distinguished clusters. Conclusion: The HPAI epidemic in 2020/2021 in Poland struck with unprecedented force. The conventional control measures may have limited effectiveness to break the transmission chain in areas with high concentrations of poultry.

2.
J Vet Res ; 64(4): 469-476, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33367134

RESUMEN

INTRODUCTION: Repeated incursions of highly pathogenic avian influenza virus (HPAIV) H5 subtype of Gs/GD lineage pose a serious threat to poultry worldwide. We provide a detailed analysis of the spatio-temporal spread and genetic characteristics of HPAIV Gs/GD H5N8 from the 2019/20 epidemic in Poland. MATERIAL AND METHODS: Samples from poultry and free-living birds were tested by real-time RT-PCR. Whole genome sequences from 24 (out of 35) outbreaks were generated and genetic relatedness was established. The clinical status of birds and possible pathways of spread were analysed based on the information provided by veterinary inspections combined with the results of phylogenetic studies. RESULTS: Between 31 December 2019 and 31 March 2020, 35 outbreaks in commercial and backyard poultry holdings and 1 case in a wild bird were confirmed in nine provinces of Poland. Most of the outbreaks were detected in meat turkeys and ducks. All characterised viruses were closely related and belonged to a previously unrecognised genotype of HPAIV H5N8 clade 2.3.4.4b. Wild birds and human activity were identified as the major modes of HPAIV spread. CONCLUSION: The unprecedentedly late introduction of the HPAI virus urges for re-evaluation of current risk assessments. Continuous vigilance, strengthening biosecurity and intensifying surveillance in wild birds are needed to better manage the risk of HPAI occurrence in the future.

3.
Vet Microbiol ; 193: 133-44, 2016 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-27599940

RESUMEN

African swine fever (ASF) is a notifiable and one of the most complex and devastating infectious disease of pigs, wild boars and other representatives of Suidae family. African swine fever virus (ASFV) developed various molecular mechanisms to evade host immune response including alteration of interferon production by multigene family protein (MGF505-2R), inhibition of NF-κB and nuclear activating factor in T-cells by the A238L protein, or modulation of host defense by CD2v lectin-like protein encoded by EP402R and EP153R genes. The current situation concerning ASF in Poland seems to be stable in comparison to other eastern European countries but up-to-date in total 106 ASF cases in wild boar and 5 outbreaks in pigs were identified. The presented study aimed to reveal and summarize the genetic variability of genes related to inhibition or modulation of infected host response among 67 field ASF isolates collected from wild boar and pigs. The nucleotide sequences derived from the analysed A238L and EP153R regions showed 100% identity. However, minor but remarkable genetic diversity was found within EP402R and MGF505-2R genes suggesting slow molecular evolution of circulating ASFV isolates and the important role of this gene in modulation of interferon I production and hemadsorption phenomenon. The obtained nucleotide sequences of Polish ASFV isolates were closely related to Georgia 2007/1 and Odintsovo 02/14 isolates suggesting their common Caucasian origin. In the case of EP402R and partially in MGF505-2R gene the identified genetic variability was related to spatio-temporal occurrence of particular cases and outbreaks what may facilitate evolution tracing of ASFV isolates. This is the first report indicating identification of genetic variability within the genes related to evasion of host immune system which may be used to trace the direction of ASFV isolates molecular evolution.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/virología , Evolución Molecular , Variación Genética , Genoma Viral/genética , Evasión Inmune/genética , Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Animales , Brotes de Enfermedades/veterinaria , Interacciones Huésped-Patógeno , Sus scrofa , Porcinos , Proteínas Virales/genética
4.
Emerg Infect Dis ; 22(7): 1201-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27314611

RESUMEN

In Poland, African swine fever (ASF) emerged in February 2014; by August 2015, the virus had been detected in >130 wild boar and in pigs in 3 backyard holdings. We evaluated ASF spread in Poland during these 18 months. Phylogenetic analysis indicated repeated incursions of genetically distinct ASF viruses of genotype II; the number of cases positively correlated wild boar density; and disease spread was very slow. More cases were reported during summer than autumn. The 18-month prevalence of ASF in areas under various animal movement restrictions was 18.6% among wild boar found dead or killed by vehicles and only 0.2% in hunted wild boar. Repeated introductions of the virus into the country, the primary role of wild boar in virus maintenance, and the slow spread of the disease indicate a need for enhanced biosecurity at pig holdings and continuous and intensive surveillance for fast detection of ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/epidemiología , Epidemias/veterinaria , Fiebre Porcina Africana/transmisión , Fiebre Porcina Africana/virología , Animales , ADN Viral/genética , Filogenia , Polonia/epidemiología , Densidad de Población , Prevalencia , Estaciones del Año , Sus scrofa , Porcinos
5.
Arch Virol ; 161(1): 189-95, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26497350

RESUMEN

African swine fever virus (ASFV) was detected in wild boar in eastern Poland in early 2014. So far, 65 cases of ASFV infection in wild boar have been recognised. The methods used for ASFV detection included highly specific real-time PCR with a universal probe library (UPL), enzyme-linked immunosorbent assay (ELISA), and an immunoperoxidase test (IPT) for identification of anti-ASFV antibodies. The positive ASF cases were located near the border with Belarus in Sokólka and Bialystok counties. Some of the countermeasures for disease prevention include early ASF diagnosis by ASFV DNA identification as well as detection of specific antibodies by systematic screening. The aim of this study was to assess the current ASF status in a Polish population of wild boar during the last two years (2014-2015).


Asunto(s)
Virus de la Fiebre Porcina Africana/aislamiento & purificación , Fiebre Porcina Africana/virología , Sus scrofa/virología , Fiebre Porcina Africana/epidemiología , Virus de la Fiebre Porcina Africana/clasificación , Virus de la Fiebre Porcina Africana/genética , Animales , Polonia/epidemiología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...