Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Mol Neurosci ; 15: 830892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321030

RESUMEN

Electrical excitability of cells, tissues and organs is a fundamental phenomenon in biology and physiology. Signatures of excitability include transient currents resulting from a constant or varying voltage gradient across compartments. Interestingly, such signatures can be observed with non-biologically-derived, macromolecular systems. Initial key literature, dating to roughly the late 1960's into the early 1990's, is reviewed here. We suggest that excitability in response to electrical stimulation is a material phenomenon that is exploited by living organisms, but that is not exclusive to living systems. Furthermore, given the ubiquity of biological hydrogels, we also speculate that excitability in protocells of primordial organisms might have shared some of the same molecular mechanisms seen in non-biological macromolecular systems, and that vestigial traces of such mechanisms may still play important roles in modern organisms' biological hydrogels. Finally, we also speculate that bio-mimicking excitability of synthetic macromolecular systems might have practical biomedical applications.

2.
Gels ; 7(2)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808087

RESUMEN

Poly(acrylic acid) (PAA) bulk gels and threads, typically derived via free-radical polymerization, are of interest as anionic polyelectrolyte mimics of cellular cytosol and as models for early protocells. The thread dimensions have been limited by the diameters of readily-available glass or plastic capillaries, and threads with diameters of less than 50 µm have been difficult to achieve. Here, we report a useful approach for achieving crosslinked, partially neutralized PAA, namely poly(acrylate), gel threads with diameters of a few microns when dry. This technique utilizes coaxial electrospinning to effectively produce capillaries (shells) of polystyrene loaded with a gel-forming precursor mixture composed of 3 M acrylic acid, methylene-bisacrylamide, potassium persulfate and 2.2 M NaOH in the core, followed by thermally-induced polymerization and then the removal of the polystyrene shell. Relatively long (up to 5 mm), continuous PAA threads with thicknesses of 5-15 µm are readily obtained, along with a multitude of PAA gel particles, which result from the occasional break-up of the fluid core prior to gel formation during the electrospinning process. The threads and beads are of the sizes of interest to model ancient protocells, certain functional aspects of excitable cells, such as myocytes and neurons, and various membraneless organelles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA