Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38571317

RESUMEN

Two cost-effective packing materials were used for n-butyl acetate removal in lab-scale biofilters, namely waste spruce root wood chips and biochar obtained as a byproduct from a wood gasifier. Three biofilters packed with spruce root wood chips: without biochar (SRWC), a similar one with 10% of biochar (SRWC-B) and that with 10% of biochar impregnated with a nitrogen fertilizer (SRWC-IB) showed similar yet differing maximum elimination capacities of 206 ± 27, 275 ± 21 and 294 ± 20 g m-3 h-1, respectively, enabling high pollutant removal efficiency (>95% at moderate loads) and stable performance. The original biochar adsorption capacity was high (208 ± 6 mgtoluene g-1), but near 70% of it was lost after a 300-day biofilter operation. By contrast, the exposed impregnated biochar drastically increased its adsorption capacity in 300 days (149 ± 7 vs. 17 ± 5 mgtoluene g-1). Colony forming unit (CFU) and microscopic analyses revealed significant packing material colonization by microorganisms and grazing fauna in all three biofilters with an acceptable pressure drop, up to 1020 Pa m-1, at the end of biofilter operation. Despite a higher price (14 vs. 123 €m-3), the application of the best performing SRWC-IB packing can reduce the total investment costs by 9% due to biofilter volume reduction.


Asunto(s)
Acetatos , Carbón Orgánico , Filtración , Tolueno , Biodegradación Ambiental
2.
Polymers (Basel) ; 16(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38399853

RESUMEN

Due to the complexity and recalcitrance of lignin, its chemical characterization is a key factor preventing the valorization of this abundant material. Multi-angle light scattering (MALS) is becoming a sought-after technique for absolute molecular weight (MW) determination of polymers and proteins. Lignin is a suitable candidate for MW determination via MALS, yet further investigation is required to confirm its absolute MW values and molecular size. Studies aiming to break down lignin into a variety of renewable products will benefit greatly from a simple and reliable determination method like MALS. Recent pioneering studies, discussed in this review, addressed several key challenges in lignin's MW characterization. Nevertheless, some lignin-specific issues still need to be considered for in-depth characterization. This study explores how MALS instrumentation manages the complexities of determining lignin's MW, e.g., with simultaneous fractionation and fluorescence interference mitigation. Additionally, we rationalize the importance of a more detailed light scattering analysis for lignin characterization, including aspects like the second virial coefficient and radius of gyration.

3.
Polymers (Basel) ; 15(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836005

RESUMEN

The heterogeneous and recalcitrant structure of lignin hinders its practical application. Here, we describe how new approaches to lignin characterization can reveal structural details that could ultimately lead to its more efficient utilization. A suite of methods, which enabled mass balance closure, the evaluation of structural features, and an accurate molecular weight (MW) determination, were employed and revealed unexpected structural features of the five alkali lignin fractions obtained with preparative size-exclusion chromatography (SEC). A thermal carbon analysis (TCA) provided quantitative temperature profiles based on sequential carbon evolution, including the final oxidation of char. The TCA results, supported with thermal desorption/pyrolysis gas chromatography-mass spectrometry (TD-Py-GC-MS) and 31P NMR spectroscopy, revealed the unfolding of the lignin structure as a result of the SEC fractionation, due to the disruption of the interactions between the high- and low-MW components. The "unraveled" lignin revealed poorly accessible hydroxyl groups and showed an altered thermal behavior. The fractionated lignin produced significantly less char upon pyrolysis, 2 vs. 47%. It also featured a higher occurrence of low-MW thermal evolution products, particularly guaiacol carbonyls, and more than double the number of OH groups accessible for phosphitylation. These observations indicate pronounced alterations in the lignin intermolecular association following size-exclusion fractionation, which may be used for more efficient lignin processing in biorefineries.

4.
ACS Appl Mater Interfaces ; 14(38): 42771-42790, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36102317

RESUMEN

There has been a tremendous increase in demand for virgin and postconsumer recycled (PCR) polymers due to their wide range of chemical and physical characteristics. Despite the numerous potential benefits of using a data-driven approach to polymer design, major hurdles exist in the development of polymer informatics due to the complicated hierarchical polymer structures. In this review, a brief introduction on virgin polymer structure, PCR polymers, compatibilization of polymers to be recycled, and their characterization using sensor array technologies as well as factors affecting the polymer properties are provided. Machine-learning (ML) algorithms are gaining attention as cost-effective scalable solutions to exploit the physical and chemical structures of polymers. The basic steps for applying ML in polymer science such as fingerprinting, algorithms, open-source databases, representations, and polymer design are detailed in this review. Further, a state-of-the-art review of the prediction of various polymer material properties using ML is reviewed. Finally, we discuss open-ended research questions on ML application to PCR polymers as well as potential challenges in the prediction of their properties using artificial intelligence for more efficient and targeted PCR polymer discovery and development.

5.
Bioresour Technol ; 342: 125974, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34600320

RESUMEN

The objective of the study was to investigate alkali lignin polymerization/depolymerization pathways in subcritical water (SW) without additives. Following a SW treatment at 200, 250, 275 and 300 °C, the products were subjected to a comprehensive suite of analyses addressing the product speciation and molecular weight (MW) distribution. The MW reduction (1.4 times) in the solid products following the SW treatment indicated a surprisingly reduced impact of cross-linking/repolymerization at 300 °C and lower temperatures. This was further confirmed by thermal carbon analysis (TCA) showing a reduction in pyrolytic charring after the SW treatment. The TD-Py gas chromatography analysis of the SW treated lignin indicated that the solid residue is less oxygenated than the initial lignin (23 vs. 29% as confirmed by elemental analysis). Thus, deoxygenation rather than re-polymerization appears to be the main process route in the absence of catalysts within the temperature range considered.


Asunto(s)
Lignina , Agua , Polimerizacion , Pirólisis , Temperatura
6.
J Phys Chem A ; 124(37): 7559-7574, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32845637

RESUMEN

Molecular beam mass spectrometry was used to follow model triglyceride pyrolysis with temperature. A selectively formed set of PAHs (276, 352, 444 amu) arose with increasing temperature. They were attributed to association of up to five C7-C8 sized fragments (observed in abundance by pyrolysis with gas chromatography), presumably due to their propensity to form stable benzyl radicals. Results were surprisingly similar regardless of triglyceride fatty acids (FAs), containing 0-2 C=C double bonds (14 to 18 carbon atoms). However, the absence of C=C double bonds shifted the process to higher temperatures. Shorter FA chains, particularly 14:0, enhanced generation of shorter size fragments, facilitating the alternate formation of nonselective PAH homology series. An increase in the length of the glass wool filled sample stage enhanced the formation of two more PAHs, 316 and 388 amu. They appear to involve the formation of indenyl in addition to benzyl radicals as key intermediates.

7.
Bioresour Technol ; 316: 123882, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32739576

RESUMEN

Lignocellulosic biomass fractionaion into its three major components is critically important for efficient feedstock utilization. The hydrothermal-ethanol method has broad application as its first step, hydrothermal treatment, provides high hemicellulose separation efficiency. However, it severely inhibits the delignification on the subsequent ethanol extraction. In this study, the second step, ethanol extraction, was facilitated by the addition of 3% NaOH and 3% H2O2, resulting in a significant improvement of lignin separation (by 48.2%). SEM, AFM, XPS, and XRD were used to characterize the surface composition of the remaining solids (crude cellulose) while the structure of isolated lignin was characterized by FT-IR, CP/MAS 13C NMR, GPC and TGA. The lignin samples isolated with both facilitated and non-facilitated ethanol extraction were compared to elucidate the lignin removal mechanism. The results showed that lignin degradation and crosslinking/polymerization occur in parallel during both the hydrothermal treatment and ethanol extraction.


Asunto(s)
Etanol , Triticum , Peróxido de Hidrógeno , Hidrólisis , Lignina , Espectroscopía Infrarroja por Transformada de Fourier
8.
Rapid Commun Mass Spectrom ; 34(14): e8813, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32285962

RESUMEN

RATIONALE: Lignin occurs in a broad range of forms, e.g., native as the main support for plant walls, and processed, for which its structure depends on the nature of the industrial isolation method, such as in paper production or in biorefineries. Due to the variety of lignin sources, there is no unified agreement on the structure of lignin or even its molecular weight (MW). METHODS: The focus of this review is on the application of atmospheric pressure ionization methods to lignin analysis by mass spectrometry (MS), namely electrospray ionization (ESI) or direct analysis in real-time (DART). Specific parameters affecting ionization including electrolytes and solvents are discussed. RESULTS: The main challenge for MW determination of lignin is its heteropolymer character as well as the mass range limitations of MS instrumentation. To date, only a few studies have successfully used the mass range above m/z 1500. We present the advantage of ESI in generating multiply charged ions, allowing for a further increase in the mass range of deconvoluted mass spectra. While some methods such as DART do not address the mass range problem, they may serve as excellent imaging tools suitable for structural characterization of lignin. CONCLUSIONS: A literature review presents the recent accomplishments in lignin MS analysis by atmospheric pressure ionization techniques. Although significant breakthroughs have been made, it is essential to further improve the operating conditions and validate the methods for a broader range of feedstocks with the results being confirmed using other methods.

9.
J Hazard Mater ; 384: 120744, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31812476

RESUMEN

Thermophilic waste air treatment in a lab-scale bubble column reactor (BCR) was used to remove an ethyl acetate/toluene mixture under both mesophilic and thermophilic conditions, at 30-50 °C. Additional tests, e.g., toluene mass transfer measurement and monitoring of microbial population development, explained the observed bioreactor response to the conducted loading tests and temperature changes. The maximum overall elimination capacity at thermophilic conditions (50 °C) was 136.9 g·m-3 h-1, however hysteresis in elimination capacity was observed in response to ascending/descending temperature and inlet concentration changes. Representatives of genera Cupriavidus, Variovorax and order Rhodospirillales were found to be predominant in the degrading microbial population, depending on the operating temperature. Thermobacillus and Blastocatella were abundant at high (50 °C) and low (30 °C) temperatures, respectively. The observed gradual shift in microbial population caused a small yet significant gradual change in developing a preference for toluene at the expense of ethyl acetate, which explains the observed hysteresis. Yet, the whole bioreactor removal efficiency remained similar at the same temperature, thus demonstrating the advantages of using thermophiles in bioreactors with temperature variation, such as robustness and flexibility.

10.
Bioresour Technol ; 294: 122157, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31557653

RESUMEN

The separation efficiencies of wheat straw components by hydrothermal treatment and ethanol extraction have been compared. The results showed that the lignin removal rate by two-step hydrothermal-ethanol method was significantly lower than that of single-step ethanol extraction. Microscopic and adsorption studies (using SEM/AFM, XPS and pore structure analysis) showed that during the hydrothermal treatment a large lignin fraction migrated from the intercellular layer and cell wall and deposited on the fiber surface. Furthermore, the deposited lignin then spread on the fiber surface to form a lignin coating layer, which prevented its dissolution in ethanol. Without prior heating, i.e., upon a single step ethanol extraction, the massive lignin deposition was avoided, presumably due to its efficient dissolution hindering its tight binding with carbohydrate polymers on the fiber surface. Therefore, the lignin removal efficiency was drastically reduced as a result of hydrothermal treatment compared to ethanol extraction.


Asunto(s)
Lignina , Triticum , Adsorción , Pared Celular , Etanol
11.
Phys Chem Chem Phys ; 21(36): 20189-20203, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31486462

RESUMEN

Molecular beam (MB) time-of-flight mass spectrometry has been used to investigate thermal decomposition of triolein, to reveal the mechanisms of low temperature soot/coke formation characteristic for triglycerides (TGs). Mass detected pyrolysis products were observed at incremented temperatures using both VUV single photon ionization (general product detection) and REMPI based selective detection of aromatic products. To augment the simple mass characterizations, we have employed stoichiometric considerations; we have supplemented the analysis further by using the detailed information available from product analysis of batch reactor TG cracking. Both the VUV photoionization and batch reactor studies indicated that formation of C7-sized stable products is a marker of significant triolein decomposition that is coupled with PAH formation. A significant fraction of the C7 species observed likely formed as a result of a C-C bond scission at the allylic position to the ω-9 double bond of oleic acid. REMPI detection indicated a high specificity for PAH formation at three distinct molecular weight values, 276, 352 and 444 amu (the latter being a fullerene precursor). The stoichiometric analysis has shown that these PAHs likely arise from condensation reactions of either C7- or C8-sized fragments (three, four and five, respectively). The C8-sized intermediate would become essential whenever the PAH product of C7 fragment condensation contained an odd number of carbon atoms, resulting in a less stable aromatic structure with an incomplete double bond conjugation. MB experiments involving either addition or in situ generation of hydrogen resulted in an enhancement of lower molecular weight PAH formation, i.e., a decrease in the effective number of condensing fragments. In contrast, an increase in temperature yielded the opposite effect.

12.
Carbohydr Polym ; 201: 141-150, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30241805

RESUMEN

Nanofibrillated cellulose (NFC)-based foam materials have broad prospects in replacing traditional foams, due to its facile natural biodegradation. This study addressed the relationship between the foam preparation process parameters and resulting pore structure. An aqueous NFC suspension was freeze-dried while adding an organic solvent, ethanol, to adjust the curing process. The effects of the solid content and freeze-drying temperature on the microstructure and mechanical stability as well as heat transfer performance of the produced NFC-based foam were investigated. The foam obtained at a 3%-5% solid content featured a well-defined lamellar and interlayer pillar support structure. With an increase in the solid content, the average wall thickness increased whereas the average pore area decreased. Yet the pore density increased with the pore distribution becoming non-uniform. With a decrease in freezing temperature, the wall thickness decreased (with no wall structure at -196 °C) but the pore density increased, with the pores being distributed more uniformly. The foam mechanical strength and thermal conductivity were found to be linked to porosity. The foam material had the most suitable mechanical and thermal insulation properties when prepared with a 5% solid content at a freeze-drying temperature of -55 °C.

13.
Sci Total Environ ; 633: 1379-1385, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29758890

RESUMEN

Exposure to water and high air humidity may affect the preservation of wood products as many preservatives are water-soluble and thus likely to leach. In this study, depletion of a common fungicide, tebuconazole (TAZ), from treated wood was investigated using a 14C-labeled tracer. The wood species and treatment technique were chosen to be representative of products such as windows and doors; specifically, ponderosa pine was dip treated with a solvent-based, metal-free formulation. The impact of different aqueous settings including high air humidity, and either simulated continuous or intermittent rain was evaluated over a period of two months. Along with the exposure type, the effect of end-grain sealing on TAZ loss was explored. Despite the exposure of treated wood to laboratory-simulated harsh environmental conditions, more than 60% of the originally sorbed TAZ remained in the wood under all scenarios. While high air humidity did not lead to TAZ depletion, simulated continuous rain led to a TAZ leaching mainly from the end grain. TAZ leaching was found to be higher for unpainted wood, where up to 40% of the originally sorbed TAZ was prone to depletion from an end grain. End-grain sealing with water-based primer and paint led to a substantial two-fold reduction of TAZ leaching. Unexpectedly, wood exposure to intermittent rain caused additional TAZ loss that could not be explained only by water leaching.

14.
J Am Soc Mass Spectrom ; 29(5): 1044-1059, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29532327

RESUMEN

The capability to characterize lignin, lignocellulose, and their degradation products is essential for the development of new renewable feedstocks. Electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR TOF-MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di-, and triarene lignin model compounds as well as kraft alkali lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9000 Da or higher, depending on the mass analyzer. The obtained M n and Mw values of 1500 and 2500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrix-assisted laser desorption/ionization (MALDI)-HR TOF-MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ion mobility ESI-HR Q-TOF-MS. Graphical Abstract ᅟ.

15.
J Phys Chem A ; 122(12): 3238-3249, 2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29513534

RESUMEN

There has been a limited understanding of high MW polycyclic aromatic hydrocarbon (PAH) product chemistry in the pyrolysis of triglycerides (TGs), though the subject has important implications for both fuel production from TGs and food science. Previous TG pyrolysis studies have been able to identify only relatively low MW GC-elutable aromatics occurring in the bulk liquid phase; products occurring in the solid phase have remained inaccessible to chemical analysis. In contrast, cold gas expansion molecular beam methods, where pyrolysis products are analyzed in real time as they are entrained in gas expansions, remove product collection difficulties, thereby allowing for analysis of coke/tar PAH precursors. In this study, the model TG triolein was heated and the ensuing products in the molecular beam were soft photoionized, enabling time-of-flight mass detection. Use of 266 nm pulses enabled selective photoionization of aromatic products. Unlike previous work on analysis of the liquid phase TG cracking products, a different and distinct pattern of rather large PAHs, up to 444 amu, was observed, at nontrivial relative product fractions. With an increase of temperature to ∼350 °C, a small number of PAHs with MW ≥ 276 amu increasingly dominated the aromatic product distribution. Surprisingly, PAH product detection ensued at rather low temperatures, as low as ∼260 °C. For tentative PAH product identification and product chemistry rationalization, we observed the product homology pattern and applied a stoichiometric analysis. The latter, combined with the known homology profiles of TG cracking products, indicated specific patterns of intermediate fragment association that facilitated large-MW PAH formation as a result of TG cracking.

16.
J Chromatogr A ; 1534: 101-110, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29292081

RESUMEN

Characterization of lignin and its degradation products, more specifically determination of their molecular weight (MW) distribution, is essential for assessment and applications of these potentially renewable phenolics. Several representative gel filtration and gel permeation systems were evaluated in this work focusing on understanding of undesired secondary non-SEC interactions while utilizing four sets of commercially available polymeric standards as well as low-MW lignin model compounds including diarene standards synthesized in-house. The gel permeation column with a nonpolar highly cross-linked porous polystyrene/divinylbenzene-based stationary phase provided the most effective separation by MW for both low and high MW model compounds. Notably, the column with a higher pore and lower particle size provided a better resolution towards polymeric standards, even though the particle size effect was downplayed in the earlier SEC studies of lignin. For two other evaluated gel filtration and gel permeation columns, the separation was strongly affected by functionalities of the analytes and correlated with the compounds' pKa rather than MW. We showed that the separation on the stationary phases featuring polar hydroxyl groups led to specific column-analyte secondary interactions, perhaps based on their hydrogen bonding with lignin. Further, the SEC column evaluation yielded similar results with two sets of chemically different standards. This setup may be used as a general approach to selecting an applicable column for lignin SEC analysis. We confirmed the obtained results with a different independent method implementing a novel approach for lignin number-average MW (Mn) calculation based on laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) data. The determined Mn corroborated the SEC results.


Asunto(s)
Cromatografía en Gel/métodos , Lignina/aislamiento & purificación , Cromatografía en Gel/normas , Lignina/química , Peso Molecular , Tamaño de la Partícula , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/normas , Poliestirenos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Compuestos de Vinilo/química
17.
Sci Rep ; 7(1): 17507, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29235511

RESUMEN

Unlike previous lignin biodegradation studies, white rot fungi were used to produce functional biopolymers from Kraft lignin. Lignin-based polymers (hydrogel precursors) partially soluble in both aqueous and organic solvents were produced employing a relatively fast (6 days) enzymation of Kraft lignin with basidiomycetes, primarily Coriolus versicolor, pre-grown on kenaf/lignin agar followed by either vacuum evaporation or acid precipitation. After drying followed by a treatment with alkaline water, this intermediate polymer became a pH-sensitive anionic hydrogel insoluble in either aqueous or organic solvents. The yield of this polymer increased from 20 to 72 wt% with the addition of 2% dimethylsulfoxide to distilled water used as a medium. The mechanical stability and buffering capacity of this hydrogel can be adjusted by washing the intermediate polymer/hydrogel precursor prior to drying with solvents of different polarity (water, methanol or ethanol). Any of these polymers featured a significant thermal resilience assessed as a high thermostable "coked" fraction in thermal carbon analysis, apparently resulting from significant covalent cross-linking that occurs during the treatment of their intermediate precursors.


Asunto(s)
Hidrogeles , Lignina/metabolismo , Polímeros , Polyporaceae/metabolismo , Polyporales/metabolismo , Aniones , Dimetilsulfóxido/química , Hidrogeles/síntesis química , Hidrogeles/química , Concentración de Iones de Hidrógeno , Lignina/química , Ensayo de Materiales , Polimerizacion , Polímeros/química , Solubilidad , Solventes/química , Temperatura , Agua/química
18.
Chemosphere ; 184: 261-268, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28601008

RESUMEN

Determining the fate of preservatives in commercial wood products is essential to minimize their losses and improve protective impregnation techniques. The fate of triazole fungicides in ponderosa pine wood was investigated in both outdoor and controlled-environment experiments using a representative triazole, tebuconazole (TAZ), which was accompanied by propiconazole (PAZ) in selected experiments. The study was designed to mimic industrial settings used in window frame manufacturing. To investigate the TAZ fate in detail, loosely and strongly bound fractions were differentiated using a multi-step extraction. The loosely bound TAZ fraction extracted through two sonications accounted for 85± 5% of the total TAZ, while the strongly bound TAZ was extracted only with an exhaustive Soxhlet extraction and corresponded to the remaining 15± 5%. A significant fraction (∼80%) of the original TAZ remained in the wood despite a six-month exposure to harsh environmental conditions, maintaining wood preservation and assuring minimal environmental impact. Depletion of loosely bound TAZ was observed from cross-sectional surfaces when exposed to rain, high humidity and sunlight. Water leaching was deemed to be the major route leading to triazole losses from wood. Leaching rate was found to be slightly higher for TAZ than for PAZ. The contribution of bio-, photo- and thermal degradation of triazoles was negligible as both PAZ and TAZ sorbed in wood remained intact. Triazole evaporation was also found to be minor at the moderate temperature (20-25 °C) recorded throughout the outdoor study.


Asunto(s)
Monitoreo del Ambiente , Fungicidas Industriales/análisis , Triazoles/análisis , Madera/química , Estudios Transversales , Ambiente , Exposición a Riesgos Ambientales , Sonicación
19.
Bioresour Technol ; 220: 414-424, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27598570

RESUMEN

Indulin AT biodegradation by basidiomycetous fungi, actinobacteria and commercial laccases was evaluated using a suite of chemical analysis methods. The extent of microbial degradation was confirmed by novel thermal carbon analysis (TCA), as the treatments altered the carbon desorption and pyrolysis temperature profiles in supernatants. Laccase treatments caused only minor changes, though with increases occurring in the 850°C and char precursor fractions. After fungal treatments, lignin showed a similar change in the TCA profile, along with a gradual decrease of the total carbon, signifying lignin mineralization (combined with polymerization). By contrast, bacteria produced phenolic monomers without their further catabolism. After 54days of cultivation, a 20wt% weight loss was observed only for fungi, Coriolus versicolor, corroborating the near-80% carbon mass balance closure obtained by TCA. Compositional changes in lignin as a result of biodegradation were confirmed by thermal desorption (TD)-pyrolysis-GC-MS validating the carbon fractionation obtained by TCA.


Asunto(s)
Actinobacteria/metabolismo , Basidiomycota/metabolismo , Lacasa/química , Lignina/metabolismo , Biodegradación Ambiental , Biomasa , Conservación de los Recursos Energéticos , Cromatografía de Gases y Espectrometría de Masas , Lacasa/metabolismo , Lignina/química , Fenoles/metabolismo , Temperatura
20.
J Phys Chem A ; 120(30): 6029-38, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27400255

RESUMEN

Current atmospheric models incorporate the values of vaporization enthalpies, ΔHvap, obtained for neat standards, thus disregarding the matrix effects on volatilization. To test the adequacy of this approximation, this study measured enthalpies of vaporization for five polycyclic aromatic hydrocarbons (PAHs) in the form of neat standards (ΔHvap) as well as adsorbed on the surface of silica, graphite, and graphene particles (ΔHvap(eff)), by using simultaneous thermogravimetry-differential scanning calorimetry (TGA-DSC). Measurement of the corresponding activation energy values, Ea(vap) and Ea vap(eff), by TGA using a derivative method was shown to be the most reliable and practical way to assess ΔHvap and ΔHvap(eff). Enthalpies of adsorption (ΔHads) were then calculated from the differences between Ea(vap) and Ea vap(eff), thus paving a way to modeling the solid-gas phase partitioning in atmospheric particulate matter (PM). The PAH adsorption on silica particle surfaces (representing n-π* interactions) resulted in negative values of ΔHads, indicating significant interactions. For graphite particles, positive ΔHads values were obtained; i.e., PAHs did not interact with the particle surface as strongly as observed for PM. PAHs on the surface of graphene particles evaporated in two stages, with the bulk of the mass loss occurring at temperatures lower than those with the neat standard, just as on graphite. Yet, unlike graphite, a small PAH fraction did not evaporate until higher temperatures compared to case of the neat standards and other particle surfaces (37.4-145.7 K), signifying negative, more PM-relevant values of ΔHads, apparently reflecting π-π* interactions and ranging between -7.6 and +32.6 kJ mol(-1), i.e., even larger than for silica, -3.3 to +8.3 kJ mol(-1). Thus, current atmospheric models may underestimate the partitioning of organic species in the particle phase unless matrix adsorption is taken into account.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...