Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 93(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189703

RESUMEN

Herpesviruses are ubiquitous, and infection by some, like Epstein-Barr virus (EBV), is nearly universal. To persist, EBV must periodically switch from a latent to a replicative/lytic phase. This productive phase is responsible for most herpesvirus-associated diseases. EBV encodes a latency-to-lytic switch protein which, upon activation, sets off a vectorially constrained cascade of gene expression that results in production of infectious virus. While triggering expression of the switch protein ZEBRA is essential to lytic cycle entry, sustaining its expression is equally important to avoid premature termination of the lytic cascade. We report that the viral protein kinase (vPK), encoded by a gene that is kinetically downstream of the lytic switch, sustains expression of ZEBRA, amplifies the lytic cascade, increasing virus production, and, importantly, prevents the abortive lytic cycle. We find that vPK, through a noncanonical site phosphorylation, activates the cellular phosphatidylinositol 3-kinase-related kinase ATM to cause phosphorylation of the heterochromatin enforcer KAP1/TRIM28 even in the absence of EBV genomes or other EBV proteins. Phosphorylation of KAP1 renders it unable to restrain ZEBRA, thereby further derepressing and sustaining its expression to culminate in virus production. This partnership with a host kinase and a transcriptional corepressor enables retrograde regulation by vPK of ZEBRA, an observation that is counter to the unidirectional regulation of gene expression reminiscent of most DNA viruses.IMPORTANCE Herpesviruses infect nearly all humans and persist quiescently for the life of the host. These viruses intermittently activate into the lytic phase to produce infectious virus, thereby causing disease. To ensure that lytic activation is not prematurely terminated, expression of the virally encoded lytic switch protein needs to be sustained. In studying Epstein-Barr virus, one of the most prevalent human herpesviruses that also causes cancer, we have discovered that a viral kinase activated by the viral lytic switch protein partners with a cellular kinase to deactivate a silencer of the lytic switch protein, thereby providing a positive feedback loop to ensure successful completion of the viral productive phase. Our findings highlight key nodes of interaction between the host and virus that could be exploited to treat lytic phase-associated diseases by terminating the lytic phase or kill cancer cells harboring herpesviruses by accelerating the completion of the lytic cascade.


Asunto(s)
Herpesvirus Humano 4/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/genética , Proteínas Virales/metabolismo , Latencia del Virus , Línea Celular , Línea Celular Tumoral , Epigénesis Genética , Células HEK293 , Humanos , Fosforilación , Transactivadores/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo
2.
Methods Mol Biol ; 1599: 127-144, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28477116

RESUMEN

ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Cromatografía Liquida , Daño del ADN/genética , Humanos , Inmunoprecipitación , Fosforilación , Transducción de Señal/genética
3.
Methods Mol Biol ; 1599: 401-418, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28477135

RESUMEN

Reprogramming of cells enables generation of pluripotent stem cells and resulting progeny through directed differentiation, making this technology an invaluable tool for the study of human development and disease. Reprogramming occurs with a wide range of efficiency, a culmination of intrinsic and extrinsic factors including the tissue of origin, the passage number and culture history of the target cells. Another major factor affecting reprogramming is the methodology used and the quality of the reprogramming process itself, including for conventional viral-based approaches viral titer and subsequent viral transduction efficiency, including downstream transgene insertion and stoichiometry. Genetic background is an important parameter affecting the efficiency of the reprogramming process with reports that cells from individuals harboring specific mutations are more difficult to reprogram than control counterparts.Ataxia-Telangiectasia (A-T) fibroblasts underwent reprogramming at reduced efficiency in contrast to their controls. To optimize reprogramming of fibroblasts from patients with A-T, we examined the response of A-T cells to various cell culture conditions after lentiviral transduction with reprogramming factors Oc4/Sox2 (pSIN4-EF2-O2S) and Klf4/c-Myc (pSIN4-CMV-K2M). Parameters included media type (KSR or serum-containing DMEM), treatment with a p53 inhibitor (small-molecule cyclic pifithrin-α), and either a low or high concentration of bFGF. Post-transduction, equivalent numbers of cells from heterozygote and homozygote patients were plated and assessed at regular intervals for survival and proliferation. Our findings indicate that A-T cells responded favorably to the addition of FCS and gradual weaning away from their native media into KSR-containing stem cell media that produced suitable conditions for their reprogramming. We examined a range of properties to identify and isolate good quality iPSCs including the expression status of important stem cell transcription factors/surface proteins, methylation levels at stem cell associated regulatory loci, persistence of transgenes, karyotype status, and teratoma-forming ability.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Lentivirus/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN/genética , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
4.
Mol Cell Proteomics ; 15(3): 1032-47, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26699800

RESUMEN

Ataxia-telangiectasia, mutated (ATM) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signaling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoints, initiating DNA repair, and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here, we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach to identify cytoplasmic proteins altered in their phosphorylation state in control and ataxia-telangiectasia (A-T) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites, including 6,686 high-confidence sites mapping to 2,536 unique proteins. A total of 62 differentially phosphorylated peptides were identified; of these, 43 were phosphorylated in control but not in A-T cells, and 19 varied in their level of phosphorylation. Motif enrichment analysis of phosphopeptides revealed that consensus ATM serine glutamine sites were overrepresented. When considering phosphorylation events, only observed in control cells (not observed in A-T cells), with predicted ATM sites phosphoSerine/phosphoThreonine glutamine, we narrowed this list to 11 candidate ATM-dependent cytoplasmic proteins. Two of these 11 were previously described as ATM substrates (HMGA1 and UIMCI/RAP80), another five were identified in a whole cell extract phosphoproteomic screens, and the remaining four proteins had not been identified previously in DNA damage response screens. We validated the phosphorylation of three of these proteins (oxidative stress responsive 1 (OSR1), HDGF, and ccdc82) as ATM dependent after H2O2 exposure, and another protein (S100A11) demonstrated ATM-dependence for translocation from the cytoplasm to the nucleus. These data provide new insights into the activation of ATM by oxidative stress through identification of novel substrates for ATM in the cytoplasm.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Ataxia Telangiectasia/metabolismo , Citoplasma/metabolismo , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Glutamina/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Fosforilación , Proteoma/metabolismo
5.
Infect Immun ; 83(9): 3612-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26123801

RESUMEN

Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por Mycobacterium/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Animales , Western Blotting , Citocinas/biosíntesis , Citometría de Flujo , Técnicas de Sustitución del Gen/métodos , Humanos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/inmunología
6.
J Biol Chem ; 286(11): 9107-19, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21149446

RESUMEN

The recognition and signaling of DNA double strand breaks involves the participation of multiple proteins, including the protein kinase ATM (mutated in ataxia-telangiectasia). ATM kinase is activated in the vicinity of the break and is recruited to the break site by the Mre11-Rad50-Nbs1 complex, where it is fully activated. In human cells, the activation process involves autophosphorylation on three sites (Ser(367), Ser(1893), and Ser(1981)) and acetylation on Lys(3016). We now describe the identification of a new ATM phosphorylation site, Thr(P)(1885) and an additional autophosphorylation site, Ser(P)(2996), that is highly DNA damage-inducible. We also confirm that human and murine ATM share five identical phosphorylation sites. We targeted the ATM phosphorylation sites, Ser(367) and Ser(2996), for further study by generating phosphospecific antibodies against these sites and demonstrated that phosphorylation of both was rapidly induced by radiation. These phosphorylations were abolished by a specific inhibitor of ATM and were dependent on ATM and the Mre11-Rad50-Nbs1 complex. As found for Ser(P)(1981), ATM phosphorylated at Ser(367) and Ser(2996) localized to sites of DNA damage induced by radiation, but ATM recruitment was not dependent on phosphorylation at these sites. Phosphorylation at Ser(367) and Ser(2996) was functionally important because mutant forms of ATM were defective in correcting the S phase checkpoint defect and restoring radioresistance in ataxia-telangiectasia cells. These data provide further support for the importance of autophosphorylation in the activation and function of ATM in vivo.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ácido Anhídrido Hidrolasas , Animales , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Línea Celular Transformada , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Activación Enzimática/efectos de la radiación , Humanos , Proteína Homóloga de MRE11 , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Fosforilación/efectos de la radiación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Radiación Ionizante , Fase S/efectos de los fármacos , Fase S/genética , Fase S/efectos de la radiación , Proteínas Supresoras de Tumor/genética
7.
PLoS Genet ; 6(10): e1001170, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20975950

RESUMEN

Zn²(+)-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn²(+)-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis.


Asunto(s)
Proteínas Portadoras/fisiología , Reparación del ADN/fisiología , Pulmón/embriología , Proteínas Nucleares/fisiología , Organogénesis/fisiología , Animales , Western Blotting , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Senescencia Celular , Daño del ADN , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Genotipo , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxidantes/farmacología , Factores de Tiempo , Tráquea/embriología , Factores de Transcripción , Rayos Ultravioleta
8.
EMBO J ; 25(15): 3504-14, 2006 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-16858402

RESUMEN

ATM kinase plays a central role in signaling DNA double-strand breaks to cell cycle checkpoints and to the DNA repair machinery. Although the exact mechanism of ATM activation remains unknown, efficient activation requires the Mre11 complex, autophosphorylation on S1981 and the involvement of protein phosphatases and acetylases. We report here the identification of several additional phosphorylation sites on ATM in response to DNA damage, including autophosphorylation on pS367 and pS1893. ATM autophosphorylates all these sites in vitro in response to DNA damage. Antibodies against phosphoserine 1893 revealed rapid and persistent phosphorylation at this site after in vivo activation of ATM kinase by ionizing radiation, paralleling that observed for S1981 phosphorylation. Phosphorylation was dependent on functional ATM and on the Mre11 complex. All three autophosphorylation sites are physiologically important parts of the DNA damage response, as phosphorylation site mutants (S367A, S1893A and S1981A) were each defective in ATM signaling in vivo and each failed to correct radiosensitivity, genome instability and cell cycle checkpoint defects in ataxia-telangiectasia cells. We conclude that there are at least three functionally important radiation-induced autophosphorylation events in ATM.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada , Sitios de Unión/efectos de la radiación , Ciclo Celular , Línea Celular Tumoral , Daño del ADN/fisiología , Daño del ADN/efectos de la radiación , Reparación del ADN , Técnica del Anticuerpo Fluorescente , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Mutación , Fosforilación/efectos de la radiación , Tolerancia a Radiación , Transducción de Señal/efectos de la radiación , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA