Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 111: 1408-1416, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30841456

RESUMEN

Chlorpromazine (CPZ) is a neuroleptic drug and prototype compound used to study intrahepatic cholestasis. The exact mechanisms of CPZ induced cholestasis remain unclear. Rat hepatocytes, or a sandwich culture of rat and human hepatocytes, have been the most commonly used models for studying CPZ toxicity in vitro. However, to better predict outcomes in pre-clinical trials where cholestasis may be an unwanted consequence, a human in vitro model, based on human HepaRG cells, capable of real-time, non-invasive and label free monitoring, alongside molecular investigations would be beneficial. To address this we used the human hepatic HepaRG cell line, and established concentrations of CPZ ranging from sub-toxic, 25 µM and 50 µM, to toxic 100 µM and compared them with untreated control. To assess the effect of this range of CPZ concentrations we employed electrical cell-substrate impedance sensing (ECIS) to measure viability and cell membrane interactions alongside traditional viability assays, immunocytostaining and qRT-PCR to assess genes of interest within adaptive and inflammatory pathways. Using these methods, we show a concentration dependant response to CPZ involving pro-inflammatory pathway, loss of tight junctions and membrane integrity, and an adaptive response mediated by Cytochrome P450 (CYP) enzyme activation and up-regulation of membrane phospholipid and xenobiotic transporters. In conclusion, structural changes within the membrane caused by sub-toxic and toxic concentrations of CPZ negatively impact the function of the cellular membrane. Damage to efflux transport proteins caused by CPZ induce cholestasis alongside downstream inflammation, which activates compensatory responses for cell survival. LAY SUMMARY: Chlorpromazine is a drug used to treat patients with schizophrenia, which has a known association with liver damage. Here we show that it causes inflammation and alters the cell membranes in liver and bile duct cells similar to what is seen within a human population. The initiation of the inflammatory response and changes to cellular structure may provide insight into the damage and disease process and inform medical treatment.


Asunto(s)
Membrana Celular/efectos de los fármacos , Clorpromazina/efectos adversos , Hepatocitos/efectos de los fármacos , Inflamación/inducido químicamente , Línea Celular , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Colestasis/inducido químicamente , Colestasis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/metabolismo , Humanos , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfolípidos/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Regulación hacia Arriba/efectos de los fármacos
2.
Sci Rep ; 7: 37541, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134251

RESUMEN

Dysfunction of cell-cell tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. Liver TJs preserve cellular polarity by delimiting functional bile-canalicular structures, forming the blood-biliary barrier. In acetaminophen-hepatotoxicity, the mechanism by which tissue cohesion and polarity are affected remains unclear. Here, we demonstrate that acetaminophen, even at low-dose, disrupts the integrity of TJ and cell-matrix adhesions, with indicators of cellular stress with liver injury in the human hepatic HepaRG cell line, and primary hepatocytes. In mouse liver, at human-equivalence (therapeutic) doses, dose-dependent loss of intercellular hepatic TJ-associated ZO-1 protein expression was evident with progressive clinical signs of liver injury. Temporal, dose-dependent and specific disruption of the TJ-associated ZO-1 and cytoskeletal-F-actin proteins, correlated with modulation of hepatic ultrastructure. Real-time impedance biosensing verified in vitro early, dose-dependent quantitative decreases in TJ and cell-substrate adhesions. Whereas treatment with NAPQI, the reactive metabolite of acetaminophen, or the PKCα-activator and TJ-disruptor phorbol-12-myristate-13-acetate, similarly reduced TJ integrity, which may implicate oxidative stress and the PKC pathway in TJ destabilization. These findings are relevant to the clinical presentation of acetaminophen-hepatotoxicity and may inform future mechanistic studies to identify specific molecular targets and pathways that may be altered in acetaminophen-induced hepatic depolarization.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hepatocitos/metabolismo , Hígado/metabolismo , Uniones Estrechas/patología , Actinas/metabolismo , Animales , Adhesión Celular , Línea Celular , Hepatocitos/patología , Humanos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Proteína de la Zonula Occludens-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA