Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 269(Pt 1): 132016, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697442

RESUMEN

Silk is a biocompatible and biodegradable material that enables the formation of various morphological forms, including nanospheres. The functionalization of bioengineered silk makes it possible to produce particles with specific properties. In addition to tumor cells, the tumor microenvironment (TME) includes stromal, immune, endothelial cells, signaling molecules, and the extracellular matrix (ECM). Matrix metalloproteinases (MMPs) are overexpressed in TME. We investigated bioengineered spider silks functionalized with MMP-responsive peptides to obtain targeted drug release from spheres within TME. Soluble silks MS12.2MS1, MS12.9MS1, and MS22.9MS2 and the corresponding silk spheres carrying MMP-2 or MMP-2/9 responsive peptides were produced, loaded with doxorubicin (Dox), and analyzed for their susceptibility to MMP-2/9 digestion. Although all variants of functionalized silks and spheres were specifically degraded by MMP-2/9, the MS22.9MS2 nanospheres showed the highest levels of degradation and release of Dox after enzyme treatment. Moreover, functionalized spheres were degraded in the presence of cancer cells releasing MMP-2/9. In the 2D and 3D spheroid cancer models, the MMP-2/9-responsive substrate was degraded and released from spheres when loaded into MS22.9MS2 particles but not into the control MS2 spheres. The present study demonstrated that a silk-based MMP-responsive delivery system could be used for controlled drug release within the tumor microenvironment.


Asunto(s)
Preparaciones de Acción Retardada , Doxorrubicina , Liberación de Fármacos , Metaloproteinasa 2 de la Matriz , Seda , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Doxorrubicina/farmacología , Doxorrubicina/química , Humanos , Seda/química , Metaloproteinasa 2 de la Matriz/metabolismo , Preparaciones de Acción Retardada/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Línea Celular Tumoral , Metaloproteinasas de la Matriz/metabolismo , Portadores de Fármacos/química , Animales
2.
Pharmacol Rep ; 76(2): 424-434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519732

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) can cause right ventricular (RV) failure and subsequent cardiohepatic syndrome referred to as congestive hepatopathy (CH). Passive blood stasis in the liver can affect inflammation, fibrosis, and ultimately cirrhosis. Cannabidiol (CBD) has many beneficial properties including anti-inflammatory and reduces RV systolic pressure and RV hypertrophy in monocrotaline (MCT)-induced PH in rats. Thus, it suggests that CBD may have the potential to limit CH development secondary to RV failure. The present study aimed to determine whether chronic administration of CBD can inhibit the CH secondary to RV hypertrophy associated with MCT-induced PH. METHODS: The experiments involved rats with and without MCT-induced PH. CBD (10 mg/kg) or its vehicle was administered once daily for 3 weeks after MCT injection (60 mg/kg). RESULTS: Monocrotaline administration increased the liver/body weight ratio. In histology examinations, we observed necrosis and vacuolar degeneration of hepatocytes as well as sinusoidal congestion. In biochemical studies, we observed increased levels of nuclear factor-κappa B (NF-κB), tumour necrosis factor-alpha (TNA-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6). CBD administration to PH rats reduced the liver/body weight ratio, improved the architecture of the liver, and inhibited the formation of necrosis. Cannabidiol also decreased the level of NF-κB, TNF-α, IL-1ß and IL-6. CONCLUSIONS: The studies show that CBD can protect the liver from CH probably through attenuating PH, protective effects on the RV, and possibly direct anti-inflammatory effects on liver tissue through regulation of the NF-κB pathway.


Asunto(s)
Cannabidiol , Insuficiencia Cardíaca , Hipertensión Pulmonar , Ratas , Animales , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/prevención & control , Hipertrofia Ventricular Derecha/prevención & control , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Cannabidiol/farmacología , Interleucina-6 , Monocrotalina/toxicidad , FN-kappa B , Factor de Necrosis Tumoral alfa , Antiinflamatorios/uso terapéutico , Necrosis , Peso Corporal
3.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542138

RESUMEN

Photodynamic therapy (PDT) is a selective tumor treatment that consists of a photosensitive compound-a photosensitizer (PS), oxygen, and visible light. Although each component has no cytotoxic properties, their simultaneous use initiates photodynamic reactions (PDRs) and sequentially generates reactive oxygen species (ROS) and/or free radicals as cytotoxic mediators, leading to PDT-induced cell death. Nevertheless, tumor cells develop various cytoprotective mechanisms against PDT, particularly the adaptive mechanism of antioxidant status. This review integrates an in-depth analysis of the cytoprotective mechanism of detoxifying ROS enzymes that interfere with PDT-induced cell death, including superoxide dismutase (SOD), catalase, glutathione redox cycle, and heme oxygenase-1 (HO-1). Furthermore, this review includes the use of antioxidant enzymes inhibitors as a strategy in order to diminish the antioxidant activities of tumor cells and to improve the effectiveness of PDT. Conclusively, PDT is an effective tumor treatment of which its effectiveness can be improved when combined with a specific antioxidant inhibitor.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Resultado del Tratamiento , Línea Celular Tumoral
4.
J Biomed Mater Res A ; 112(3): 463-472, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37941467

RESUMEN

Eliminating endotoxins is a common problem in the development of biotechnologically produced pharmaceuticals or biomaterials. Residual endotoxins in the final sample may hamper the properties of the product or induce severe adverse effects. Developing an effective downstream purification protocol that ensures a lack of minimal endotoxin content in the final product can be a challenging task. In our previous studies, we developed nanospheres produced from bioengineered silks. Despite their good overall biocompatibility, in vivo characterization of spheres showed mild activation of the immune system (mainly in terms of anti-silk antibody production). Herein, we examined, if the endotoxins delivered with the silk spheres might have contributed to activating the adaptive immune response. We investigated various commercially available methods for endotoxin removal that can be applied as an extra step in downstream endotoxin removal from MS1-type silk proteins. We selected a method that allowed for a 10-fold reduction of endotoxin content in soluble silk and 2-fold in the final product (silk spheres). The reduced level of endotoxins improved the biocompatibility of the silk spheres as these particles induced negligible titers of anti-silk antibodies in an in vivo immune study. Since endotoxins can enhance life-threatening immune responses, it is crucial to optimize the method of their removal before clinical use not only of silk-based products but also of other biomolecules produced biotechnologically.


Asunto(s)
Endotoxinas , Seda , Animales , Ratones , Materiales Biocompatibles , Biotecnología
5.
Cancers (Basel) ; 15(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067351

RESUMEN

High expression and phosphorylation of signal transducer and transcription activator 3 (STAT3) are correlated with progression and poor prognosis in various types of cancer. The constitutive activation of STAT3 in cancer affects processes such as cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. The importance of STAT3 in cancer makes it a potential therapeutic target. Various methods of directly and indirectly blocking STAT3 activity at different steps of the STAT3 pathway have been investigated. However, the outcome has been limited, mainly by the number of upstream proteins that can reactivate STAT3 or the relatively low specificity of the inhibitors. A new branch of molecules with significant therapeutic potential has emerged thanks to recent developments in the regulatory function of non-coding nucleic acids. Oligonucleotide-based therapeutics can silence target transcripts or edit genes, leading to the modification of gene expression profiles, causing cell death or restoring cell function. Moreover, they can reach untreatable targets, such as transcription factors. This review briefly describes oligonucleotide-based therapeutics that found application to target STAT3 activity in cancer. Additionally, this review comprehensively summarizes how the inhibition of STAT3 activity by nucleic acid-based therapeutics such as siRNA, shRNA, ASO, and ODN-decoy affected the therapy of different types of cancer in preclinical and clinical studies. Moreover, due to some limitations of oligonucleotide-based therapeutics, the importance of carriers that can deliver nucleic acid molecules to affect the STAT3 in cancer cells and cells of the tumor microenvironment (TME) was pointed out. Combining a high specificity of oligonucleotide-based therapeutics toward their targets and functionalized nanoparticles toward cell type can generate very efficient formulations.

6.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446125

RESUMEN

The enhancement of the endocannabinoid tone might have a beneficial influence on hypertension. Polypharmacology proposes multi-target-directed ligands (MTDLs) as potential therapeutic agents for the treatment of complex diseases. In the present paper, we studied JZL195, a dual inhibitor of the two major endocannabinoid-degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Hemodynamic parameters were assessed in conscious animals via radiotelemetry and tail-cuff methods and then evaluated by the area under the curve (AUC). Single administration of JZL195 induced dose-dependent weak hypotensive and bradycardic responses in SHR but not in WKY. Similarly, its chronic application revealed only a slight hypotensive potential which, however, effectively prevented the progression of hypertension and did not undergo tolerance. In addition, multiple JZL195 administrations slightly decreased heart rate only in WKY and prevented the gradual weight gain in both groups. JZL195 did not affect organ weights, blood glucose level, rectal temperature and plasma oxidative stress markers. In conclusion, chronic dual FAAH/MAGL inhibition prevents the progression of hypertension in SHR without affecting some basal functions of the body. In addition, our study clearly proves the suitability of AUC for the evaluation of weak blood pressure changes.


Asunto(s)
Hipertensión , Monoacilglicerol Lipasas , Ratas , Animales , Piperidinas/farmacología , Ratas Endogámicas SHR , Monoglicéridos , Endocannabinoides , Amidohidrolasas , Hipertensión/tratamiento farmacológico
7.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446085

RESUMEN

Cancer remains a leading cause of death globally, and its complexity poses a significant challenge to effective treatment. Cancer stem cells and their markers have become key players in tumor growth and progression. CD133, a marker in various cancer types, is an active research area as a potential therapeutic target. This article explores the role of CD133 in cancer treatment, beginning with an overview of cancer statistics and an explanation of cancer stem cells and their markers. The rise of CD133 is discussed, including its structure, functions, and occurrence in different cancer types. Furthermore, the article covers CD133 as a therapeutic target, focusing on gene therapy, immunotherapy, and approaches to affect CD133 expression. Nanoparticles such as gold nanoparticles and nanoliposomes are also discussed in the context of CD133-targeted therapy. In conclusion, CD133 is a promising therapeutic target for cancer treatment. As research in this area progresses, it is hoped that CD133-targeted therapies will offer new and effective treatment options for cancer patients in the future.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Humanos , Oro/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias/metabolismo , Antígeno AC133/metabolismo , Línea Celular Tumoral
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166753, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37187449

RESUMEN

Cannabidiol (CBD) is a non-intoxicating compound of Cannabis with anti-fibrotic properties. Pulmonary hypertension (PH) is a disease that can lead to right ventricular (RV) failure and premature death. There is evidence that CBD reduces monocrotaline (MCT)-induced PH, including reducing right ventricular systolic pressure (RVSP), vasorelaxant effect on pulmonary arteries, and decreasing expression of profibrotic markers in the lungs. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on profibrotic parameters in the RVs of MCT-induced PH rats. In MCT-induced PH, we found an increase in profibrotic parameters and parameters related to RV dysfunction, i.e. plasma pro-B-type natriuretic peptide (NT-proBNP), cardiomyocyte width, interstitial and perivascular fibrosis area, amount of fibroblasts and fibronectin, as well as overexpression of the transforming growth of factor ß1 (TGF-ß1), galectin-3 (Gal-3), suppressor of mothers against decapentaplegic 2 (SMAD2), phosphorylated SMAD2 (pSMAD2) and alpha-smooth muscle actin (α-SMA). In contrast, vascular endothelial cadherin (VE-cadherin) levels were decreased in the RVs of MCT-induced PH rats. Administration of CBD reduced the amount of plasma NT-proBNP, the width of cardiomyocytes, the amount of fibrosis area, fibronectin and fibroblast expression, as well as decreased the expression of TGF-ß1, Gal-3, SMAD2, pSMAD2, and increased the level of VE-cadherin. Overall, CBD has been found to have the anti-fibrotic potential in MCT-induced PH. As such, CBD may act as an adjuvant therapy for PH, however, further detailed investigations are recommended to confirm our promising results.


Asunto(s)
Cannabidiol , Insuficiencia Cardíaca , Hipertensión Pulmonar , Ratas , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Factor de Crecimiento Transformador beta , Fibronectinas , Monocrotalina , Factor de Crecimiento Transformador beta1/metabolismo , Fibrosis
9.
Cells ; 12(3)2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36766732

RESUMEN

The formation of embryoid bodies (EBs) from human pluripotent stem cells resembles the early stages of human embryo development, mimicking the organization of three germ layers. In our study, EBs were tested for their vulnerability to chronic exposure to low doses of MeHgCl (1 nM) under atmospheric (21%O2) and physioxia (5%O2) conditions. Significant differences were observed in the relative expression of genes associated with DNA repair and mitophagy between the tested oxygen conditions in nontreated EBs. When compared to physioxia conditions, the significant differences recorded in EBs cultured at 21% O2 included: (1) lower expression of genes associated with DNA repair (ATM, OGG1, PARP1, POLG1) and mitophagy (PARK2); (2) higher level of mtDNA copy number; and (3) higher expression of the neuroectodermal gene (NES). Chronic exposure to a low dose of MeHgCl (1 nM) disrupted the development of EBs under both oxygen conditions. However, only EBs exposed to MeHgCl at 21% O2 revealed downregulation of mtDNA copy number, increased oxidative DNA damage and DNA fragmentation, as well as disturbances in SOX17 (endoderm) and TBXT (mesoderm) genes expression. Our data revealed that physioxia conditions protected EBs genome integrity and their further differentiation.


Asunto(s)
Cuerpos Embrioides , Mitofagia , Humanos , Mitofagia/genética , Reparación del ADN , Oxígeno/farmacología , Oxígeno/metabolismo
10.
Biomed Pharmacother ; 159: 114234, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36634588

RESUMEN

Cannabidiol (CBD) is a safe and well-tolerated plant-derived drug with anti-proliferative properties. Pulmonary hypertension (PH) is a rapidly progressive and still incurable disease. CBD diminishes monocrotaline (MCT)-induced PH, including reduced right ventricular systolic pressure, pulmonary vascular hypertrophy, and right ventricular remodeling. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg once daily for 21 days) on selected remodeling parameters in the lung of MCT-induced PH rats. In MCT-induced PH, we found an increase in profibrotic parameters, e.g., transforming growth factor ß1 (TGF-ß1), galectin-3 (Gal-3), procollagen I, collagen I, C-propeptide, matrix metalloproteinase 9 (MMP-9) and an increased number of mast cells. In our study, we observed that the TGF-ß1, Gal-3, procollagen I, collagen I, C-propeptide, and mast cell levels in lung tissue were decreased after CBD administration to MCT-treated rats. In summary, CBD treatment has an anti-proliferative effect on MCT-induced PH. Given the beneficial multidirectional effects of CBD on PH, we believe that CBD can be used as an adjuvant PH therapy, but this argument needs to be confirmed by clinical trials.


Asunto(s)
Cannabidiol , Hipertensión Pulmonar , Animales , Ratas , Proliferación Celular , Modelos Animales de Enfermedad , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Pulmón , Monocrotalina/farmacología , Procolágeno/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
11.
Sci Rep ; 12(1): 13480, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931709

RESUMEN

Bioengineered MS1 silk is derived from major ampullate spidroin 1 (MaSp1) from the spider Nephila clavipes. The MS1 silk was functionalized with the H2.1 peptide to target Her2-overexpressing cancer cells. The immunogenic potential of drug carriers made from MS1-type silks was investigated. The silk spheres were administered to healthy mice, and then (i) the phenotypes of the immune cells that infiltrated the Matrigel plugs containing spheres (implanted subcutaneously), (ii) the presence of silk-specific antibodies (after two intravenous injections of the spheres), (iii) the splenocyte phenotypes and their activity after restimulation ex vivo in terms of proliferation and cytokine secretion (after single intravenous injection of the spheres) were analyzed. Although the immunogenicity of MS1 particles was minor, the H2.1MS1 spheres attracted higher levels of B lymphocytes, induced a higher anti-silk antibody titer, and, after ex vivo restimulation, caused the activation of splenocytes to proliferate and express more IFN-γ and IL-10 compared with the PBS and MS1 groups. Although the H2.1MS1 spheres triggered a certain degree of an immunological response, multiple injections (up to six times) neither hampered the carrier-dependent specific drug delivery nor induced toxicity, as previously indicated in a mouse breast cancer model. Both findings indicate that a drug delivery system based on MS1-type silk has great potential for the treatment of cancer and other conditions.


Asunto(s)
Fibroínas , Neoplasias , Arañas , Animales , Ingeniería Biomédica , Portadores de Fármacos/farmacología , Sistemas de Liberación de Medicamentos , Inmunidad , Ratones , Neoplasias/tratamiento farmacológico
12.
Molecules ; 27(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35630804

RESUMEN

Cannabidiol (CBD) is a plant-derived compound with antioxidant and anti-inflammatory properties. Pulmonary hypertension (PH) is still an incurable disease. CBD has been suggested to ameliorate monocrotaline (MCT)-induced PH, including reduction in right ventricular systolic pressure (RVSP), a vasorelaxant effect on pulmonary arteries and a decrease in the white blood cell count. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on the parameters of oxidative stress and inflammation in the lungs of rats with MCT-induced PH. In MCT-induced PH, we found a decrease in total antioxidant capacity (TAC) and glutathione level (GSH), an increase in inflammatory parameters, e.g., tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), nuclear factor kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1), and cluster of differentiation 68 (CD68), and the overexpression of cannabinoid receptors type 1 and 2 (CB1-Rs, CB2-Rs). Administration of CBD increased TAC and GSH concentrations, glutathione reductase (GSR) activity, and decreased CB1-Rs expression and levels of inflammatory mediators such as TNF-α, IL -1ß, NF-κB, MCP-1 and CD68. In conclusion, CBD has antioxidant and anti-inflammatory effects in MCT-induced PH. CBD may act as an adjuvant therapy for PH, but further detailed preclinical and clinical studies are recommended to confirm our promising results.


Asunto(s)
Cannabidiol , Hipertensión Pulmonar , Animales , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Cannabidiol/farmacología , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Pulmón/patología , Monocrotalina , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
13.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35163351

RESUMEN

GPR18 receptor protein was detected in the heart and vasculature and appears to play a functional role in the cardiovascular system. We investigated the effects of the new GPR18 agonists PSB-MZ-1415 and PSB-MZ-1440 and the new GPR18 antagonist PSB-CB-27 on isolated human pulmonary arteries (hPAs) and compared their effects with the previously proposed, but unconfirmed, GPR18 ligands NAGly, Abn-CBD (agonists) and O-1918 (antagonist). GPR18 expression in hPAs was shown at the mRNA level. PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD fully relaxed endothelium-intact hPAs precontracted with the thromboxane A2 analog U46619. PSB-CB-27 shifted the concentration-response curves (CRCs) of PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD to the right; O-1918 caused rightward shifts of the CRCs of PSB-MZ-1415 and NAGly. Endothelium removal diminished the potency and the maximum effect of PSB-MZ-1415. The potency of PSB-MZ-1415 or NAGly was reduced in male patients, smokers and patients with hypercholesterolemia. In conclusion, the novel GPR18 agonists, PSB-MZ-1415 and PSB-MZ-1440, relax hPAs and the effect is inhibited by the new GPR18 antagonist PSB-CB-27. GPR18, which appears to exhibit lower activity in hPAs from male, smoking or hypercholesterolemic patients, may become a new target for the treatment of pulmonary arterial hypertension.


Asunto(s)
Ácidos Araquidónicos , Arteria Pulmonar , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Ácidos Araquidónicos/farmacología , Humanos , Ligandos , Masculino , Arteria Pulmonar/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
14.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34832902

RESUMEN

Our study aimed to examine the endothelium (vascular)-protecting effects of chronic cannabidiol (CBD) administration (10 mg/kg once daily for 2 weeks) in aortas and small mesenteric (G3) arteries isolated from deoxycorticosterone-induced hypertensive (DOCA-salt) rats and spontaneously hypertensive rats (SHR). CBD reduced hypertrophy and improved the endothelium-dependent vasodilation in response to acetylcholine in the aortas and G3 of DOCA-salt rats and SHR. The enhancement of vasorelaxation was prevented by the inhibition of nitric oxide (NO) with L-NAME and/or the inhibition of cyclooxygenase (COX) with indomethacin in the aortas and G3 of DOCA-salt and SHR, respectively. The mechanism of the CBD-mediated improvement of endothelial function in hypertensive vessels depends on the vessel diameter and may be associated with its NO-, the intermediate-conductance calcium-activated potassium channel- or NO-, COX-, the intermediate and the small-conductance calcium-activated potassium channels-dependent effect in aortas and G3, respectively. CBD increased the vascular expression of the cannabinoid CB1 and CB2 receptors and aortic levels of endocannabinoids with vasorelaxant properties e.g., anandamide, 2-arachidonoylglycerol and palmitoyl ethanolamide in aortas of DOCA-salt and/or SHR. In conclusion, CBD treatment has vasoprotective effects in hypertensive rats, in a vessel-size- and hypertension-model-independent manner, at least partly via inducing local vascular changes in the endocannabinoid system.

15.
Cancers (Basel) ; 13(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34771557

RESUMEN

For years, surgery, radiotherapy, and chemotherapy have been the gold standards to treat cancer, although continuing research has sought a more effective approach. While advances can be seen in the development of anticancer drugs, the tools that can improve their delivery remain a challenge. As anticancer drugs can affect the entire body, the control of their distribution is desirable to prevent systemic toxicity. The application of a suitable drug delivery platform may resolve this problem. Among other materials, silks offer many advantageous properties, including biodegradability, biocompatibility, and the possibility of obtaining a variety of morphological structures. These characteristics allow the exploration of silk for biomedical applications and as a platform for drug delivery. We have reviewed silk structures that can be used for local and systemic drug delivery for use in cancer therapy. After a short description of the most studied silks, we discuss the advantages of using silk for drug delivery. The tables summarize the descriptions of silk structures for the local and systemic transport of anticancer drugs. The most popular techniques for silk particle preparation are presented. Further prospects for using silk as a drug carrier are considered. The application of various silk biomaterials can improve cancer treatment by the controllable delivery of chemotherapeutics, immunotherapeutics, photosensitizers, hormones, nucleotherapeutics, targeted therapeutics (e.g., kinase inhibitors), and inorganic nanoparticles, among others.

16.
Eur J Pharmacol ; 911: 174560, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34648805

RESUMEN

The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated. A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids - plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation. All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties. Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases. A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.


Asunto(s)
Cannabinoides/farmacología , Endocannabinoides/metabolismo , Enfermedades Respiratorias/tratamiento farmacológico , Animales , Cannabinoides/administración & dosificación , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Biológicos , Receptores de Cannabinoides/inmunología , Receptores de Cannabinoides/metabolismo , Enfermedades Respiratorias/metabolismo , Tratamiento Farmacológico de COVID-19
17.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576212

RESUMEN

Currently, no treatment can completely cure pulmonary hypertension (PH), which can lead to right ventricular failure and, consequently, death. Therefore, searching for new therapies remains important. Increased resistance in pulmonary circulation is mainly caused by the excessive contraction and proliferation of small pulmonary arteries. Cannabinoids, a group of lipophilic compounds that all interact with cannabinoid receptors, exert a pulmonary vasodilatory effect through several different mechanisms, including mechanisms that depend on vascular endothelium and/or receptor-based mechanisms, and may also have anti-proliferative and anti-inflammatory properties. The vasodilatory effect is important in regulating pulmonary resistance, which can improve patients' quality of life. Moreover, experimental studies on the effects of cannabidiol (plant-derived, non-psychoactive cannabinoid) in animal PH models have shown that cannabidiol reduces right ventricular systolic pressure and excessive remodelling and decreases pulmonary vascular hypertrophy and pulmonary vascular resistance. Due to the potentially beneficial effects of cannabinoids on pulmonary circulation and PH, in this work, we review whether cannabinoids can be used as an adjunctive therapy for PH. However, clinical trials are still needed to recommend the use of cannabinoids in the treatment of PH.


Asunto(s)
Cannabinoides/metabolismo , Hipertensión Pulmonar/terapia , Animales , Antiinflamatorios/farmacología , Cannabidiol/farmacología , Proliferación Celular , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Ventrículos Cardíacos , Humanos , Técnicas In Vitro , Ligandos , Pulmón/metabolismo , Óxido Nítrico , Circulación Pulmonar , Receptores de Cannabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sístole , Vasoconstricción , Vasodilatación , Disfunción Ventricular Derecha
18.
Nanomedicine (Lond) ; 16(18): 1553-1565, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34165326

RESUMEN

Background: Due to factors such as silk sequence, purification, degradation, morphology and functionalization, each silk variant should be individually tested for potential toxicity. Aim:  In vivo toxicological evaluation of the previously characterized bioengineered H2.1MS1 spider silk particles that can deliver chemotherapeutics to human epidermal growth factor receptor 2-positive breast cancer. Materials & methods: Silk nanoparticles (H2.1MS1 and control MS1) were administered intravenously to mice, and then the organismal response was assessed. Several parameters of acute and subchronic toxicity were analyzed, including animal mortality and behavior, nanosphere biodistribution, and histopathological analysis of internal organs. Also, the complete blood count, as well as the concentration of biochemical parameters and cytokines in the serum, were examined. Results & conclusion: No toxicity of the systemically administrated silk nanosphere was observed, indicating their potential application in biomedicine.


Asunto(s)
Nanosferas , Seda , Animales , Ingeniería Biomédica , Ratones , Distribución Tisular
19.
Int J Mol Sci ; 22(9)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063297

RESUMEN

Our study aimed to examine the effects of hypertension and the chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on vascular function and the endocannabinoid system in spontaneously hypertensive rats (SHR). Functional studies were performed on small mesenteric G3 arteries (sMA) and aortas isolated from SHR and normotensive Wistar Kyoto rats (WKY) treated with URB597 (1 mg/kg; twice daily for 14 days). In the aortas and sMA of SHR, endocannabinoid levels and cannabinoid CB1 receptor (CB1R) expression were elevated. The CB1R antagonist AM251 diminished the methanandamide-evoked relaxation only in the sMA of SHR and enhanced the vasoconstriction induced by phenylephrine and the thromboxane analog U46619 in sMA in SHR and WKY. In the sMA of SHR, URB597 elevated anandamide levels, improved the endothelium-dependent vasorelaxation to acetylcholine, and in the presence of AM251 reduced the vasoconstriction to phenylephrine and enhanced the vasodilatation to methanandamide, and tended to reduce hypertrophy. In the aortas, URB597 elevated endocannabinoid levels improved the endothelium-dependent vasorelaxation to acetylcholine and decreased CB1R expression. Our study showed that hypertension and chronic administration of URB597 caused local, resistance artery-specific beneficial alterations in the vascular endocannabinoid system, which may bring further advantages for therapeutic application of pharmacological inhibition of FAAH.


Asunto(s)
Amidohidrolasas/efectos de los fármacos , Amidohidrolasas/metabolismo , Benzamidas/farmacología , Carbamatos/farmacología , Endocannabinoides/metabolismo , Hipertensión Esencial/metabolismo , Hipertensión Esencial/terapia , Acetilcolina , Animales , Aorta , Ácidos Araquidónicos , Hipertensión/metabolismo , Masculino , Arterias Mesentéricas/efectos de los fármacos , Nitroprusiato , Alcamidas Poliinsaturadas , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores de Cannabinoides , Vasoconstricción , Vasodilatación/efectos de los fármacos
20.
J Clin Med ; 10(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919308

RESUMEN

Treatment with Mesenchymal Stem/Stromal Cells (MSCs) in clinical trials is becoming one of the most-popular and fast-developing branches of modern regenerative medicine, as it is still in an experimental phase. The cross-section of diseases to which these cells are applied is very wide, ranging from degenerative diseases, through autoimmune processes and to acute inflammatory diseases, e.g., viral infections. Indeed, now that first clinical trials applying MSCs against COVID-19 have started, important questions concern not only the therapeutic properties of MSCs, but also the changes that might occur in the cell features as a response to the "cytokine storm" present in the acute phase of an infection and capable of posing a risk to a patient. The aim of our study was thus to assess changes potentially occurring in the biology of MSCs in the active inflammatory environment, e.g., in regards to the cell cycle, cell migration and secretory capacity. The study using MSCs derived from Wharton's jelly (WJ-MSCs) was conducted under two aerobic conditions: 21% O2 vs. 5% O2, since oxygen concentration is one of the key factors in inflammation. Under both oxygen conditions cells were exposed to proinflammatory cytokines involved significantly in acute inflammation, i.e., IFNγ, TNFα and IL-1ß at different concentrations. Regardless of the aerobic conditions, WJ-MSCs in the inflammatory environment do not lose features typical for mesenchymal cells, and their proliferation dynamic remains unchanged. Sudden fluctuations in proliferation, the early indicator of potential genetic disturbance, were not observed, while the cells' migration activity increased. The presence of pro-inflammatory factors was also found to increase the secretion of such anti-inflammatory cytokines as IL-4 and IL-10. It is concluded that the inflammatory milieu in vitro does not cause phenotype changes or give rise to proliferation disruption of WJ-MSCs, and nor does it inhibit the secretory properties providing for their use against acute inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...