Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Biol Macromol ; : 132477, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38772459

RESUMEN

KRASG12D are the most prevalent oncogenic mutations and a promising target for solid tumor therapies. However, its inhibition exhibits tremendous challenge due to the necessity of high binding affinity to obviate the need for covalent binders. Here we report the evidence of a novel class of Imidazo[1,2-a]pyridine derivative as potentially significant novel inhibitors of KRASG12D, discovered through extensive ligand-based screening against 2-[(2R)-piperidin-2-yl]-1H-indole, an important scaffold for KRASG12D inhibition via switch-I/II (S-I/II) pocket. The proposed compounds exhibited similar binding affinities and overlapped pose configurations to 2-[(2R)-piperidin-2-yl]-1H-indole, serving as a reliable starting point for drug discovery. Comparative free energy profiles demonstrated that C4 [2-methyl-3-((5-phenyl-1H-1,2,4-triazol-3-yl)methyl)imidazo[1,2-a]pyridine] effectively shifted the protein to a stable low-energy conformation via a prominent transition state. The conformational changes across the transition revealed the conformational shift of switch-I and II to a previously known off-like conformation of inactive KRASG12D with rmsd of 0.91 Å. These conformations were even more prominent than the privileged scaffold 2-[(2R)-piperidin-2-yl]-1H-indole. The representative structure overlay of C4 and another X-ray crystallography solved BI-2852 bound inactive KRASG12D revealed that Switch-I and II exhibited off-like conformations. The cumulative variance across the first eigenvalue that accounted for 57 % of the collective variance validated this on-to-off transition. In addition, the relative interaction of C4 binding showed consistent patterns with BI-2852. Taken together, our results support the inhibitory activity of [2-methyl-3-((5-phenyl-1H-1,2,4-triazol-3-yl)methyl)imidazo[1,2-a]pyridine] by shifting active KRASG12D to an inactive conformation.

2.
Plant J ; 116(5): 1529-1544, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37658783

RESUMEN

Structural determinants of substrate recognition remain inadequately defined in broad specific cell-wall modifying enzymes, termed xyloglucan xyloglucosyl transferases (XETs). Here, we investigate the Tropaeolum majus seed TmXET6.3 isoform, a member of the GH16_20 subfamily of the GH16 network. This enzyme recognises xyloglucan (XG)-derived donors and acceptors, and a wide spectrum of other chiefly saccharide substrates, although it lacks the activity with homogalacturonan (pectin) fragments. We focus on defining the functionality of carboxyl-terminal residues in TmXET6.3, which extend acceptor binding regions in the GH16_20 subfamily but are absent in the related GH16_21 subfamily. Site-directed mutagenesis using double to quintuple mutants in the carboxyl-terminal region - substitutions emulated on barley XETs recognising the XG/penta-galacturonide acceptor substrate pair - demonstrated that this activity could be gained in TmXET6.3. We demonstrate the roles of semi-conserved Arg238 and Lys237 residues, introducing a net positive charge in the carboxyl-terminal region (which complements a negative charge of the acidic penta-galacturonide) for the transfer of xyloglucan fragments. Experimental data, supported by molecular modelling of TmXET6.3 with the XG oligosaccharide donor and penta-galacturonide acceptor substrates, indicated that they could be accommodated in the active site. Our findings support the conclusion on the significance of positively charged residues at the carboxyl terminus of TmXET6.3 and suggest that a broad specificity could be engineered via modifications of an acceptor binding site. The definition of substrate specificity in XETs should prove invaluable for defining the structure, dynamics, and function of plant cell walls, and their metabolism; these data could be applicable in various biotechnologies.


Asunto(s)
Aminoácidos , Glicosiltransferasas , Especificidad por Sustrato , Glicosiltransferasas/metabolismo , Aminoácidos/metabolismo , Células Vegetales/metabolismo , Pared Celular/metabolismo , Xilanos/metabolismo
3.
Cells ; 12(2)2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36672259

RESUMEN

Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.


Asunto(s)
Integrinas , Neoplasias , Humanos , Integrinas/metabolismo , Ligandos , Moléculas de Adhesión Celular , Modelos Moleculares , Neoplasias/tratamiento farmacológico
4.
J. inborn errors metab. screen ; 11: e2022022, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1421994

RESUMEN

Abstract Mucopolysaccharidosis IIIA (MPS IIIA) is a lysosomal storage disorder (LSD) caused by deficiency of lysosomal N-sulphoglucosamine sulphohydrolase, which is one of four enzymes involved in heparan sulfate degradation. Traditional methods used for MPS IIIA diagnostics usually constitute of selective screening, based on the analysis of urinary glycosaminoglycans, further enzymatic assays in leukocytes, and mutation analysis. Nowadays, some LSDs, including mucopolysaccharidoses, can be precisely diagnosed by mass spectrometry-based techniques. Up to this date, there are no comprehensive studies of MPS IIIA diagnostics by MALDI-TOF analysis of free oligosaccharides in urine published. In the presented work, MALDI-TOF/TOF analysis of permethylated oligosaccharides was performed to obtain the set of glyco-biomarkers that together form the specific fingerprint of this disease. Early and accurate diagnostics of MPS IIIA is crucial to stabilize the progressive cellular damage and improve the overall well-being of patients.

5.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233140

RESUMEN

Xyloglucan endotransglycosylases (XETs) play key roles in the remodelling and reconstruction of plant cell walls. These enzymes catalyse homo-transglycosylation reactions with xyloglucan-derived donor and acceptor substrates and hetero-transglycosylation reactions with a variety of structurally diverse polysaccharides. In this work, we describe the basis of acceptor substrate binding specificity in non-specific Tropaeolum majus (TmXET6.3) and specific Populus tremula x tremuloides (PttXET16A) XETs, using molecular docking and molecular dynamics (MD) simulations combined with binding free energy calculations. The data indicate that the enzyme-donor (xyloglucan heptaoligosaccharide or XG-OS7)/acceptor complexes with the linear acceptors, where a backbone consisted of glucose (Glc) moieties linked via (1,4)- or (1,3)-ß-glycosidic linkages, were bound stably in the active sites of TmXET6.3 and PttXET16A. Conversely, the acceptors with the (1,6)-ß-linked Glc moieties were bound stably in TmXET6.3 but not in PttXET16A. When in the (1,4)-ß-linked Glc containing acceptors, the saccharide moieties were replaced with mannose or xylose, they bound stably in TmXET6.3 but lacked stability in PttXET16A. MD simulations of the XET-donor/acceptor complexes with acceptors derived from (1,4;1,3)-ß-glucans highlighted the importance of (1,3)-ß-glycosidic linkages and side chain positions in the acceptor substrates. Our findings explain the differences in acceptor binding specificity between non-specific and specific XETs and associate theoretical to experimental data.


Asunto(s)
Química Computacional , beta-Glucanos , Glucosa , Glicosilación , Glicosiltransferasas/metabolismo , Manosa , Simulación del Acoplamiento Molecular , Plantas/metabolismo , Polisacáridos/metabolismo , Especificidad por Sustrato , Xilanos/química , Xilosa
6.
Eur J Mass Spectrom (Chichester) ; 28(1-2): 47-55, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35521830

RESUMEN

Cholera is a life-threatening diarrhoeal disease caused by ingestion of Vibrio cholerae. There are at least 200 serogroups of V. cholerae but only two of them are causing epidemics - O1 and O139 serogroups. Fragmentation analysis of O-antigen, also known as O-specific polysaccharide (OSP), from lipopolysaccharide (LPS) is important to obtain new information about its structure, such as fragmentation patterns and fragment structures. In the present study, OSP and core (OSPc) structure from V. cholerae O139 was studied using matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF) and direct injection electrospray ionization (ESI)-MS methods. MALDI-TOF analysis was performed in positive-ion reflectron mode, while ESI-MS was performed in negative ionization mode. ESI-MS analysis was followed by ESI-MS/MS analysis. Using this analytical approach, we managed to obtain two possible fragmentation pathways of OSP from V. cholerae O139. Mutual sign of these two pathways is shortening the length of the oligosaccharide by neutral loss of monosaccharide residues. Additionally, liquid chromatography-MS analysis was performed to separate depicted molecular forms of OSPc.


Asunto(s)
Vibrio cholerae O139 , Vibrio cholerae , Cromatografía Liquida , Antígenos O , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem , Vibrio cholerae/química
7.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33879617

RESUMEN

Mycobacterium tuberculosis, one of the deadliest pathogens in human history, is distinguished by a unique, multilayered cell wall, which offers the bacterium a high level of protection from the attacks of the host immune system. The primary structure of the cell wall core, composed of covalently linked peptidoglycan, branched heteropolysaccharide arabinogalactan, and mycolic acids, is well known, and numerous enzymes involved in the biosynthesis of its components are characterized. The cell wall biogenesis takes place at both cytoplasmic and periplasmic faces of the plasma membrane, and only recently some of the specific transport systems translocating the metabolic intermediates between these two compartments have been characterized [M. Jackson, C. M. Stevens, L. Zhang, H. I. Zgurskaya, M. Niederweis, Chem. Rev., 10.1021/acs.chemrev.0c00869 (2020)]. In this work, we use CRISPR interference methodology in Mycobacterium smegmatis to functionally characterize an ATP-binding cassette (ABC) transporter involved in the translocation of galactan precursors across the plasma membrane. We show that genetic knockdown of the transmembrane subunit of the transporter results in severe morphological changes and the accumulation of an aberrantly long galactan precursor. Based on similarities with structures and functions of specific O-antigen ABC transporters of gram-negative bacteria [C. Whitfield, D. M. Williams, S. D. Kelly, J. Biol. Chem. 295, 10593-10609 (2020)], we propose a model for coupled synthesis and export of the galactan polymer precursor in mycobacteria.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Galactanos/metabolismo , Lipopolisacáridos/metabolismo , Mycobacterium smegmatis/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Modelos Moleculares , Mycobacterium smegmatis/genética
8.
Molecules ; 25(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260399

RESUMEN

Plant xyloglucan xyloglucosyl transferases or xyloglucan endo-transglycosylases (XET; EC 2.4.1.207) catalogued in the glycoside hydrolase family 16 constitute cell wall-modifying enzymes that play a fundamental role in the cell wall expansion and re-modelling. Over the past thirty years, it has been established that XET enzymes catalyse homo-transglycosylation reactions with xyloglucan (XG)-derived substrates and hetero-transglycosylation reactions with neutral and charged donor and acceptor substrates other than XG-derived. This broad specificity in XET isoforms is credited to a high degree of structural and catalytic plasticity that has evolved ubiquitously in algal, moss, fern, basic Angiosperm, monocot, and eudicot enzymes. These XET isoforms constitute gene families that are differentially expressed in tissues in time- and space-dependent manners during plant growth and development, and in response to biotic and abiotic stresses. Here, we discuss the current state of knowledge of broad specific plant XET enzymes and how their inherently carbohydrate-based transglycosylation reactions tightly link with structural diversity that underlies the complexity of plant cell walls and their mechanics. Based on this knowledge, we conclude that multi- or poly-specific XET enzymes are widespread in plants to allow for modifications of the cell wall structure in muro, a feature that implements the multifaceted roles in plant cells.


Asunto(s)
Pared Celular/química , Pared Celular/enzimología , Glicosiltransferasas/fisiología , Plantas/química , Plantas/enzimología , Biocatálisis , Glicosilación , Glicosiltransferasas/química , Especificidad por Sustrato
9.
Plant J ; 104(3): 752-767, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32799357

RESUMEN

We report on the homo- and hetero-transglycosylation activities of the HvXET3 and HvXET4 xyloglucan xyloglucosyl transferases (XET; EC 2.4.1.207) from barley (Hordeum vulgare L.), and the visualisation of these activities in young barley roots using Alexa Fluor 488-labelled oligosaccharides. We discover that these isozymes catalyse the transglycosylation reactions with the chemically defined donor and acceptor substrates, specifically with the xyloglucan donor and the penta-galacturonide [α(1-4)GalAp]5 acceptor - the homogalacturonan (pectin) fragment. This activity is supported by 3D molecular models of HvXET3 and HvXET4 with the docked XXXG donor and [α(1-4)GalAp]5 acceptor substrates at the -4 to +5 subsites in the active sites. Comparative sequence analyses of barley isoforms and seed-localised TmXET6.3 from nasturtium (Tropaeolum majus L.) permitted the engineering of mutants of TmXET6.3 that could catalyse the hetero-transglycosylation reaction with the xyloglucan/[α(1-4)GalAp]5 substrate pair, while wild-type TmXET6.3 lacked this activity. Expression data obtained by real-time quantitative polymerase chain reaction of HvXET transcripts and a clustered heatmap of expression profiles of the gene family revealed that HvXET3 and HvXET6 co-expressed but did not share the monophyletic origin. Conversely, HvXET3 and HvXET4 shared this relationship, when we examined the evolutionary history of 419 glycoside hydrolase 16 family members, spanning monocots, eudicots and a basal Angiosperm. The discovered hetero-transglycosylation activity in HvXET3 and HvXET4 with the xyloglucan/[α(1-4)GalAp]5 substrate pair is discussed against the background of roles of xyloglucan-pectin heteropolymers and how they may participate in spatial patterns of cell wall formation and re-modelling, and affect the structural features of walls.


Asunto(s)
Pared Celular/metabolismo , Glucanos/metabolismo , Glicosiltransferasas/metabolismo , Hordeum/metabolismo , Oligosacáridos/metabolismo , Xilanos/metabolismo , Aniones/metabolismo , Dominio Catalítico , Fluoresceínas/química , Glicosilación , Glicosiltransferasas/química , Glicosiltransferasas/genética , Hordeum/citología , Hordeum/genética , Concentración de Iones de Hidrógeno , Modelos Moleculares , Familia de Multigenes , Oligosacáridos/química , Pectinas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Especificidad por Sustrato , Ácidos Sulfónicos/química
10.
Beilstein J Org Chem ; 16: 1853-1862, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802202

RESUMEN

A series of ten novel ᴅ-fructofuranosyl and ᴅ-tagatofuranosyl sulfones bearing a 1-O-phosphono moiety and three different substituents at C-2 has been prepared. Due to the structural similarities of these scaffolds to the native substrate of mycobacterial galactofuranosyltransferase GlfT2 in the transition state, we evaluated these compounds by computational methods, as well as in an enzyme assay for the possible inhibition of the mycobacterial galactan biosynthesis. Our data show that despite favorable docking scores to the active site of GlfT2, none of these compounds serve as efficient inhibitors of the enzymes involved in the mycobacterial galactan biosynthesis.

11.
Phytochemistry ; 175: 112368, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32334148

RESUMEN

The native dimeric Petroselinum crispum (Mill.) Fuss protein Pet c 1.0201 and a monomeric xyloglucan endotransglycosylase enzyme (Garajova et al., 2008) isolated from the root cells co-purify and share similar molecular masses and acidic isoelectric points. In this work, we determined the complete primary structure of the parsley Pet c 1.0201 protein, based on tryptic and chymotryptic peptides followed by the manual micro-gradient chromatographic separation coupled with offline MALDI-TOF/TOF mass spectrometry. The bioinformatics approach enabled us to include the parsley protein into the PR-10 family, as it exhibited the highest protein sequence identity with the Apium graveolens Api g 1.0201 allergen and the major Daucus carota allergen Dau c 1.0201. Hence, we designated the Petroselinum crispum protein as Pet c 1.0201 and deposited it in the UniProt Knowledgebase under the accession C0HKF5. 3D protein homology modelling and molecular dynamics simulations of the Pet c 1.0201 dimer confirmed the typical structure of the Bet v 1 family allergens, and the potential of the Pet c 1.0201 protein to dimerize in water. However, the behavioural properties of Pet c 1.0201 and the celery allergen Api g 1.0101 differed in the presence of salts due to transiently and stably formed dimeric forms of Pet c 1.0201 and Api g 1.0101, respectively.


Asunto(s)
Apium , Daucus carota , Alérgenos , Petroselinum , Proteínas de Plantas
12.
Chemistry ; 26(47): 10769-10780, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32208534

RESUMEN

The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell-cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH-π interactions (stacking) in protein-carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH-π interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH-π stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol-1 . All the results show that the stacking CH-π interactions in protein-carbohydrate complexes can be considered to be a driving force of the binding in such complexes.


Asunto(s)
Carbohidratos/química , Carbono/química , Biología Computacional , Hidrógeno/química , Proteínas/química , Enlace de Hidrógeno , Técnicas In Vitro , Unión Proteica , Termodinámica
13.
Antibiotics (Basel) ; 9(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935842

RESUMEN

While target-based drug design has proved successful in several therapeutic areas, this approach has not yet provided compelling outcomes in the field of antibacterial agents. This statement remains especially true for the development of novel therapeutic interventions against tuberculosis, an infectious disease that is among the top ten leading causes of death globally. Mycobacterial galactan is an important component of the protective cell wall core of the tuberculosis pathogen and it could provide a promising target for the design of new drugs. In this review, we summarize the current knowledge on galactan biosynthesis in Mycobacterium tuberculosis, including landmark findings that led to the discovery and understanding of three key enzymes in this pathway: UDP-galactose mutase, and galactofuranosyl transferases GlfT1 and GlfT2. Moreover, we recapitulate the efforts aimed at their inhibition. The predicted common transition states of the three enzymes provide the lucrative possibility of multitargeting in pharmaceutical development, a favourable property in the mitigation of drug resistance. We believe that a tight interplay between target-based computational approaches and experimental methods will result in the development of original inhibitors that could serve as the basis of a new generation of drugs against tuberculosis.

14.
Plant Mol Biol ; 100(1-2): 181-197, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30868545

RESUMEN

KEY MESSAGE: The knowledge of substrate specificity of XET enzymes is important for the general understanding of metabolic pathways to challenge the established notion that these enzymes operate uniquely on cellulose-xyloglucan networks. Xyloglucan xyloglucosyl transferases (XETs) (EC 2.4.1.207) play a central role in loosening and re-arranging the cellulose-xyloglucan network, which is assumed to be the primary load-bearing structural component of plant cell walls. The sequence of mature TmXET6.3 from Tropaeolum majus (280 residues) was deduced by the nucleotide sequence analysis of complete cDNA by Rapid Amplification of cDNA Ends, based on tryptic and chymotryptic peptide sequences. Partly purified TmXET6.3, expressed in Pichia occurred in N-glycosylated and unglycosylated forms. The quantification of hetero-transglycosylation activities of TmXET6.3 revealed that (1,3;1,4)-, (1,6)- and (1,4)-ß-D-glucooligosaccharides were the preferred acceptor substrates, while (1,4)-ß-D-xylooligosaccharides, and arabinoxylo- and glucomanno-oligosaccharides were less preferred. The 3D model of TmXET6.3, and bioinformatics analyses of identified and putative plant xyloglucan endotransglycosylases (XETs)/hydrolases (XEHs) of the GH16 family revealed that H94, A104, Q108, K234 and K237 were the key residues that underpinned the acceptor substrate specificity of TmXET6.3. Compared to the wild-type enzyme, the single Q108R and K237T, and double-K234T/K237T and triple-H94Q/A104D/Q108R variants exhibited enhanced hetero-transglycosylation activities with xyloglucan and (1,4)-ß-D-glucooligosaccharides, while those with (1,3;1,4)- and (1,6)-ß-D-glucooligosaccharides were suppressed; the incorporation of xyloglucan to (1,4)-ß-D-glucooligosaccharides by the H94Q variant was influenced most extensively. Structural and biochemical data of non-specific TmXET6.3 presented here extend the classic XET reaction mechanism by which these enzymes operate in plant cell walls. The evaluations of TmXET6.3 transglycosylation activities and the incidence of investigated residues in other members of the GH16 family suggest that a broad acceptor substrate specificity in plant XET enzymes could be more widespread than previously anticipated.


Asunto(s)
Glicosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Ingeniería de Proteínas , Semillas/enzimología , Tropaeolum/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , ADN Complementario/genética , Germinación , Glicosilación , Glicosiltransferasas/química , Modelos Moleculares , Petroselinum/enzimología , Filogenia , Proteínas de Plantas/química , Homología Estructural de Proteína , Especificidad por Sustrato
15.
Food Chem ; 274: 543-546, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30372976

RESUMEN

Apiosidases are glycosidases relevant for aroma development during fermentation of wines and black tea. Reaction mechanism of apiosidase from Aspergillus aculeatus in commercial glycanase Viscozyme L was studied by 1H NMR technique. Study of hydrolysis of 4-nitrophenyl ß-D-apiofuranoside revealed that this reaction proceeds with inversion of hydroxyl group in the anomeric center, which confirms inverting mechanism of the enzyme and its inability to catalyze transapiosylation in syntheses of apiosides.


Asunto(s)
Aspergillus/enzimología , Glucosidasas/metabolismo , Fermentación , Glicósidos/metabolismo , Hidrólisis
16.
Chemistry ; 24(27): 7051-7059, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29575294

RESUMEN

Mycobacterium tuberculosis features a unique cell wall that protects the bacterium from the external environment. Disruption of the cell wall assembly is a promising direction for novel anti-tuberculotic drugs. A key component of the cell wall is galactan, a polysaccharide chain composed of galactofuranose (Galf) units connected by alternating ß-(1-5) and ß-(1-6) linkages. The majority of the galactan chain is biosynthesized by a bifunctional enzyme-galactofuranosyl transferase 2 (GlfT2). GlfT2 catalyzes two reactions: the formation of ß-(1-5) and ß-(1-6) linkages. It was suggested that the enzyme acts through a processive mechanism until it adds 30-35 Galf units in a single active site. We applied a QM/MM string method coupled with ab initio molecular dynamics simulations to study the two reactions catalyzed by GlfT2. We showed that both reactions proceed very similarly and feature similar transition-state structures. We also present novel information about the ring puckering behavior of the five-membered furanose ring during the glycosyltransferase reaction and a calculated transition-state structure with galactose in a furanose form that may be used as a guide for the rational design of very specific and extremely potent inhibitors, that is, transition-state analogues, for GlfT2. Due to the absence of a furanose form of galactose in humans, transition-state-analogous inhibitors represent an attractive scaffold for the development of novel antibacterial drugs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Galactosiltransferasas/metabolismo , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/enzimología , Teoría Cuántica , Proteínas Bacterianas/química , Sitios de Unión , Dominio Catalítico , Galactosa/química , Galactosa/metabolismo , Galactosiltransferasas/química , Especificidad por Sustrato , Termodinámica
17.
Arch Biochem Biophys ; 643: 42-49, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29477770

RESUMEN

XynA from Erwinia chrysanthemi (EcXyn30A), belonging to glycoside hydrolase family 30 subfamily 8, is specialized for hydrolysis of 4-O-methylglucuronoxylan (GX). Carboxyl group of 4-O-methylglucuronic acid serves as a substrate recognition element interacting ionically with positively charged Arg293 of the enzyme. We determined kinetic parameters of EcXyn30A on GX, its methyl ester (GXE) and 4-O-methylglucoxylan (GXR) and compared them with behavior of the enzyme variant in which Arg293 was replaced by Ala. The modifications of the substrate carboxyl groups resulted in several thousand-fold decrease in catalytic efficiency of EcXyn30A. In contrast, the R293A replacement reduced catalytic efficiency on GX only 18-times. The main difference was in catalytic rate (kcat) which was much lower for EcXyn30A acting on the modified substrates than for the variant which exhibited similar kcat values on all three polymers. The R293A variant cleaved GX, GXE and GXR on the second glycosidic bond from branch towards the reducing end, similarly to EcXyn30A. The R293A replacement caused 15-times decrease in specific activity on MeGlcA3Xyl4, but it did not influence low activity on linear xylooligosaccharides. Docking experiments showed that MeGlcA3Xyl4 and its esterified and reduced forms were bound to both enzymes in analogous way but with different binding energies.


Asunto(s)
Endo-1,4-beta Xilanasas/metabolismo , Xilanos/química , Xilanos/metabolismo , Aspergillus niger/enzimología , Endo-1,4-beta Xilanasas/química , Hidrólisis , Cinética , Modelos Moleculares , Polimerizacion , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
18.
World J Microbiol Biotechnol ; 34(2): 19, 2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29302817

RESUMEN

α-Galactosidases are assigned to the class of hydrolases and the subclass of glycoside hydrolases (GHs). They belong to six GH families and include the only characterized α-galactosidases from yeasts (GH 27, Saccharomyces cerevisiae). The present study focuses on an investigation of the lactose-inducible α-galactosidase produced by Papiliotrema flavescens. The enzyme was present on the surface of cells and in the cytosol. Its temperature optimum was about 60 °C and the pH optimum was 4.8; the pH stability ranged from 3.2 to 6.6. This α-galactosidase also exhibited transglycosylation activity. The cytosol α-galactosidase with a molecular weight about 110 kDa, was purified using a combination of liquid chromatography techniques. Three intramolecular peptides were determined by the partial structural analysis of the sequences of the protein isolated, using MALDI-TOF/TOF mass spectrometry. The data obtained recognized the first yeast α-galactosidase, which belongs to the GH 36 family. The bioinformatics analysis and homology modeling of a 210 amino acids long C-terminal sequence (derived from cDNA) confirmed the correctness of these findings. The study was also supplemented by the screening of capsular cryptococcal yeasts, which produce the surface lactose-inducible α- and ß-galactosidases. The production of the lactose-inducible α-galactosidases was not found to be a general feature within the yeast strains examined and, therefore, the existing hypothesis on the general function of this enzyme in cryptococcal capsule rearrangement cannot be confirmed.


Asunto(s)
Basidiomycota/enzimología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , alfa-Galactosidasa/química , alfa-Galactosidasa/metabolismo , Secuencia de Aminoácidos , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/crecimiento & desarrollo , Cryptococcus , Citosol/enzimología , ADN Complementario , ADN de Hongos/genética , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Genes Fúngicos/genética , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Lactosa/metabolismo , Modelos Moleculares , Peso Molecular , Conformación Proteica , Alineación de Secuencia , Análisis de Secuencia de Proteína , Especificidad por Sustrato , Temperatura , alfa-Galactosidasa/genética , alfa-Galactosidasa/aislamiento & purificación
19.
PLoS One ; 12(12): e0189375, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29232414

RESUMEN

Protein-carbohydrate interactions are very often mediated by the stacking CH-π interactions involving the side chains of aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) or phenylalanine (Phe). Especially suitable for stacking is the Trp residue. Analysis of the PDB database shows Trp stacking for 265 carbohydrate or carbohydrate like ligands in 5 208 Trp containing motives. An appropriate model system to study such an interaction is the AAL lectin family where the stacking interactions play a crucial role and are thought to be a driving force for carbohydrate binding. In this study we present data showing a novel finding in the stacking interaction of the AAL Trp side chain with the carbohydrate. High resolution X-ray structure of the AAL lectin from Aleuria aurantia with α-methyl-l-fucoside ligand shows two possible Trp side chain conformations with the same occupation in electron density. The in silico data shows that the conformation of the Trp side chain does not influence the interaction energy despite the fact that each conformation creates interactions with different carbohydrate CH groups. Moreover, the PDB data search shows that the conformations are almost equally distributed across all Trp-carbohydrate complexes, which would suggest no substantial preference for one conformation over another.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Lectinas/metabolismo , Triptófano/metabolismo , Cristalografía por Rayos X , Bases de Datos de Proteínas , Lectinas/química , Conformación Proteica , Triptófano/química
20.
J Chem Theory Comput ; 12(12): 6062-6076, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27787999

RESUMEN

Hybrid QM/MM computational studies can provide invaluable insight into the mechanisms of enzymatic reactions that can be exploited for rational drug design. Various approaches are available for such studies. However, their strengths and weaknesses may not be immediately apparent. Using the retaining glycosyltransferase ppGalNAcT2 as a case study, we compare different methodologies used to obtain reaction paths and transition state information. Ab Initio MD using CPMD coupled with the String Method is used to derive the minimum free energy reaction path. The geometrical features of the free energy path, especially around the transition state, agree with the minimum potential energy path obtained by the much less computationally expensive Nudged Elastic Band method. The barrier energy, however, differs by 8 kcal/mol. The free energy surface generated by metadynamics provides a rough overview of the reaction and can confirm the physical relevance of optimized paths or provide an initial guess for path optimization methods. Calculations of enzymatic reactions are usually performed at best at the DFT level of theory. A comparison of widely used functionals with high-level DLPNO-CCSD(T)/CBS data on the potential energy profile serves as a validation of the usability of DFT for this type of enzymatic reaction. The M06-2X meta-hybrid functional in particular matches the DLPNO-CCSD(T)/CBS reference extremely well with errors within 1 kcal/mol. However, even pure-GGA functional OPBE provides sufficient accuracy for this type of study.


Asunto(s)
Glicosiltransferasas/química , Modelos Moleculares , Teoría Cuántica , Glicosiltransferasas/metabolismo , Magnesio/química , Estructura Terciaria de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...