Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ther Adv Med Oncol ; 16: 17588359241266164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175989

RESUMEN

Background: Current patient selection for adjuvant chemotherapy (ACT) after curative surgery for stage II colon cancer (CC) is suboptimal, causing overtreatment of high-risk patients and undertreatment of low-risk patients. Postoperative circulating tumor DNA (ctDNA) could improve patient selection for ACT. Objectives: We conducted an early model-based evaluation of the (cost-)effectiveness of ctDNA-guided selection for ACT in stage II CC in the Netherlands to assess the conditions for cost-effective implementation. Methods: A validated Markov model, simulating 1000 stage II CC patients from diagnosis to death, was supplemented with ctDNA data. Five ACT selection strategies were evaluated: the current guideline (pT4, pMMR), ctDNA-only, and three strategies that combined ctDNA status with pT4 and pMMR status in different ways. For each strategy, the costs, life years, quality-adjusted life years (QALYs), recurrences, and CC deaths were estimated. Sensitivity analyses were performed to assess the impact of the costs of ctDNA testing, strategy adherence, ctDNA as a predictive biomarker, and ctDNA test performance. Results: Model predictions showed that compared to current guidelines, the ctDNA-only strategy was less effective (+2.2% recurrences, -0.016 QALYs), while the combination strategies were more effective (-3.6% recurrences, +0.038 QALYs). The combination strategies were not cost-effective, since the incremental cost-effectiveness ratio was €67,413 per QALY, exceeding the willingness-to-pay threshold of €50,000 per QALY. Sensitivity analyses showed that the combination strategies would be cost-effective if the ctDNA test costs were lower than €1500, or if ctDNA status was predictive of treatment response, or if the ctDNA test performance improved substantially. Conclusion: Adding ctDNA to current high-risk clinicopathological features (pT4 and pMMR) can improve patient selection for ACT and can also potentially be cost-effective. Future studies should investigate the predictive value of post-surgery ctDNA status to accurately evaluate the cost-effectiveness of ctDNA testing for ACT decisions in stage II CC.


Effectiveness and cost-effectiveness of circulating tumour DNA-guided selection for adjuvant chemotherapy in patients with stage II colon cancer Most patients with stage II colon cancer (CC) are cured by surgery. Therefore, guidelines recommend to only offer adjuvant chemotherapy to patients who have a tumor with high-risk features. However, current selection is suboptimal, leading to recurrence of cancer in 13% of low-risk patients and unnecessary administration of chemotherapy in some high-risk patients. Previous studies indicate that a biomarker, so-called circulating tumour DNA (ctDNA), could improve the selection of high-risk patients for adjuvant chemotherapy, as patients who have detectable ctDNA in their blood after surgery are likely to develop a recurrence. Despite its potential, implementation is still pending. Our study assessed the long-term effectiveness and costs associated with various ctDNA-guided strategies for selecting high-risk patients for adjuvant chemotherapy in stage II CC. We used an health-economic model to simulate a cohort of 1000 Dutch patients with stage II CC from diagnosis to death. Next, we compared the health outcomes and costs of the ctDNA-guided strategies to those when selection is based on the Dutch guideline. We found that a combination of the Dutch guideline and ctDNA was the most effective strategy, but not cost-effective. Additional analyses showed that ctDNA-guided selection were cost-effective if the costs of the ctDNA test were below 1500 euros, if the ctDNA test performed significantly better, or if patients with detectable ctDNA responded better to chemotherapy. Thus, while post-surgery ctDNA status is a good indicator for recurrence risk, specific criteria related to ctDNA test performance and costs, in addition to combining ctDNA with current high-risk features, should be met to achieve cost-effective implementation. Looking ahead, future studies should explore how patients with detectable ctDNA respond to chemotherapy for next assessments of the cost-effectiveness of ctDNA-guided strategies in selecting patients with stage II CC for adjuvant chemotherapy.

2.
Mol Oncol ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060377

RESUMEN

Circulating tumor DNA (ctDNA) detection has multiple promising applications in oncology, but the road toward implementation in clinical practice is unclear. We aimed to support the implementation process by exploring potential future pathways of ctDNA testing. To do so, we studied four ctDNA-testing applications in two cancer types and elicited opinions from 30 ctDNA experts in the Netherlands. Our results showed that the current available evidence differed per application and cancer type. Tumor profiling and monitoring treatment response were found most likely to be implemented in non-small cell lung cancer (NSCLC) within 5 years. For colorectal cancer, applications of ctDNA testing were found to be at an early stage in the implementation process. Demonstrating clinical utility was found a key aspect for successful implementation, but there was no consensus regarding the evidence requirements. The next step toward implementation is to define how clinical utility of biomarkers should be evaluated. Finally, these data indicate that specific challenges for each clinical application and tumor type should be appropriately addressed in a deliberative process involving all stakeholders to ensure implementation of ctDNA testing and timely access for patients.

3.
J Mol Diagn ; 25(1): 36-45, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36402278

RESUMEN

Circulating tumor DNA (ctDNA) is a promising new biomarker with multiple potential applications in cancer care. Estimating total cost of ctDNA testing is necessary for reimbursement and implementation, but challenging because of variations in workflow. We aimed to develop a micro-costing framework for consistent cost calculation of ctDNA testing. First, the foundation of the framework was built, based on the complete step-wise diagnostic workflow of ctDNA testing. Second, the costing method was set up, including costs for personnel, materials, equipment, overhead, and failures. Third, the framework was evaluated by experts and applied to six case studies, including PCR-, mass spectrometry-, and next-generation sequencing-based platforms, from three Dutch hospitals. The developed ctDNA micro-costing framework includes the diagnostic workflow from blood sample collection to diagnostic test result. The framework was developed from a Dutch perspective and takes testing volume into account. An open access tool is provided to allow for laboratory-specific calculations to explore the total costs of ctDNA testing specific workflow parameters matching the setting of interest. It also allows to straightforwardly assess the impact of alternative prices or assumptions on the cost per sample by simply varying the input parameters. The case studies showed a wide range of costs, from €168 to €7638 ($199 to $9124) per sample, and generated information. These costs are sensitive to the (coverage of) platform, setting, and testing volume.


Asunto(s)
ADN Tumoral Circulante , Humanos , ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena de la Polimerasa , Biomarcadores de Tumor/genética
4.
BMC Cancer ; 22(1): 504, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524234

RESUMEN

BACKGROUND: A first pilot study showed that an image-guided navigation system could improve resection margin rates in locally advanced (LARC) and locally recurrent rectal cancer (LRRC) patients. Incremental surgical innovation is often implemented without reimbursement consequences, health economic aspects should however also be taken into account. This study evaluates the early cost-effectiveness of navigated surgery compared to standard surgery in LARC and LRRC. METHODS: A Markov decision model was constructed to estimate the expected costs and outcomes for navigated and standard surgery. The input parameters were based on pilot data from a prospective (navigation cohort n = 33) and retrospective (control group n = 142) data. Utility values were measured in a comparable group (n = 63) through the EQ5D-5L. Additionally, sensitivity and value of information analyses were performed. RESULTS: Based on this early evaluation, navigated surgery showed incremental costs of €3141 and €2896 in LARC and LRRC. In LARC, navigated surgery resulted in 2.05 Quality-Adjusted Life Years (QALYs) vs 2.02 QALYs for standard surgery. For LRRC, we found 1.73 vs 1.67 QALYs respectively. This showed an Incremental Cost-Effectiveness Ratio (ICER) of €136.604 for LARC and €52.510 for LRRC per QALY gained. In scenario analyses, optimal utilization rates of the navigation technology lowered the ICER to €61.817 and €21.334 for LARC and LRRC. The ICERs of both indications were most sensitive to uncertainty surrounding the risk of progression in the first year after surgery, the risk of having a positive surgical margin, and the costs of the navigation system. CONCLUSION: Adding navigation system use is expected to be cost-effective in LRRC and has the potential to become cost-effective in LARC. To increase the probability of being cost-effective, it is crucial to optimize efficient use of both the hybrid OR and the navigation system and identify subgroups where navigation is expected to show higher effectiveness.


Asunto(s)
Recurrencia Local de Neoplasia , Neoplasias del Recto , Análisis Costo-Beneficio , Humanos , Márgenes de Escisión , Recurrencia Local de Neoplasia/cirugía , Proyectos Piloto , Estudios Prospectivos , Años de Vida Ajustados por Calidad de Vida , Neoplasias del Recto/cirugía , Estudios Retrospectivos
5.
Cancers (Basel) ; 14(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35406555

RESUMEN

Tissue biopsies can be burdensome and are only effective in 10-30% of patients with metastasized non-small-cell lung cancer (mNSCLC). Next-generation sequencing (NGS) on cell-free DNA (cfDNA) might be an attractive alternative. We evaluated the costs, throughput time, and diagnostic yield of two diagnostic scenarios with tissue and cfDNA for mNSCLC patients, compared to diagnostics based on tissue biopsy alone. Data were retrieved from 209 stage IV NSCLC patients included in 10 hospitals in the Netherlands in the observational Lung cancer Early Molecular Assessment (LEMA) trial. Discrete event simulation was developed to compare three scenarios, using LEMA data as input where possible: (1) diagnostics with "tissue only"; (2) diagnostics with "cfDNA first", and subsequent tissue biopsy if required (negative for EGFR, BRAF ALK, ROS1); (3) cfDNA if tissue biopsy failed ("tissue first"). Scenario- and probabilistic analyses were performed to quantify uncertainty. In scenario 1, 84% (Credibility Interval [CrI] 70-94%) of the cases had a clinically relevant test result, compared to 93% (CrI 86-98%) in scenario 2, and 93% (CrI 86-99%) in scenario 3. The mean throughput time was 20 days (CrI 17-23) pp in scenario 1, 9 days (CrI 7-11) in scenario 2, and 19 days (CrI 16-22) in scenario 3. Mean costs were €2304 pp (CrI €2067-2507) in scenario 1, compared to €3218 (CrI €3071-3396) for scenario 2, and €2448 (CrI €2382-2506) for scenario 3. Scenarios 2 and 3 led to a reduction in tissue biopsies of 16% and 9%, respectively. In this process-based simulation analysis, the implementation of cfDNA for patients with mNSCLC resulted in faster completion of molecular profiling with more identified targets, with marginal extra costs in scenario 3.

6.
J Mol Biol ; 348(3): 741-58, 2005 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15826668

RESUMEN

Common domain databases contain sequence motifs which belong to the ubiquitin fold family and are called Ras binding (RB) and Ras association (RalGDS/AF6 Ras associating) (RA) domains. The name implies that they bind to Ras (or Ras-like) GTP-binding proteins, and a few of them have been documented to qualify as true Ras effectors, defined as binding only to the activated GTP-bound form of Ras. Here we have expressed a large number of these domains and investigated their interaction with Ras, Rap and M-Ras. While their (albeit weak) sequence homology suggest that the domains adopt a common fold, not all of them bind to Ras proteins, irrespective of whether they are called RB or RA domains. We used fluorescence spectroscopy and isothermal titration calorimetry to show that the binding affinities vary over a large range, and are usually specific for either Ras or Rap. Moreover, the specificity is dictated by a set of key residues in the interface. Stopped-flow kinetic analysis showed that the association rate constants determine the different affinities of effector binding, while the dissociation rate constants are in a similar range. Manual sequence analysis allowed us to define positively charged sequence epitopes in certain secondary structure elements of the ubiquitin fold (beta1, beta2 and alpha1) which are located at similar positions and comprise the hot spots of the binding interface. These residues are important to qualify an RA/RB domain as a true candidate Ras or Rap effector.


Asunto(s)
Conformación Proteica , Proteínas ras/metabolismo , Animales , Calorimetría , Dicroismo Circular , ADN Polimerasa Dirigida por ADN , Epítopos , Humanos , Modelos Moleculares , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica , Proteínas de Unión al GTP rap1/química , Proteínas de Unión al GTP rap1/metabolismo , Proteínas ras/química , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA