Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 237: 114383, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35447431

RESUMEN

Recently, a protocol for radiolabeling of aryl fluorosulfates ("SuFEx click radiolabeling") using ultrafast 18F/19F isotopic exchange has been reported. Although promising, the original procedure turned out to be rather inefficient. However, systematic optimization of the reaction parameters allowed for development of a robust method for SuFEx radiolabeling which obviates the need for azeotropic drying, base addition and HPLC purification. The developed protocol enabled efficient 18F-fluorination of low nanomolar amounts of aryl fluorosulfates in highly diluted solution (micromolar concentrations). It was successfully used to prepare a series of 29 18F-fluorosulfurylated phenols - including modified ezetimibe, α-tocopherol and etoposide, the two tyrosine derivatives Boc-Tyr([18F]FS)-OMe and H-Tyr([18F]FS)-OMe, the FAP-specific ligand [18F]FS-UAMC1110, and the DPA-714 analog [18F]FS-DPA - in fair to excellent yields. Preliminary evaluation demonstrated sufficient in vivo stability of radiofluorinated electron rich or neutral {Boc-Tyr([18F]FS)-OMe), H-Tyr([18F]FS)-OMe and [18F]FS-DPA} aryl fluorosulfates. Furthermore, [18F]FS-DPA was identified as a promising tracer for visualization of TSPO expression.


Asunto(s)
Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radiofármacos , Radioisótopos de Flúor/metabolismo , Radioisótopos de Flúor/farmacología , Halogenación , Ligandos , Nanoestructuras , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Radiofármacos/farmacología
2.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34885141

RESUMEN

PURPOSE: The preclinical evaluation of 3-l- and 3-d-[18F]FPhe in comparison to [18F]FET, an established tracer for tumor imaging. METHODS: In vitro studies were conducted with MCF-7, PC-3, and U87 MG human tumor cell lines. In vivo µPET studies were conducted in healthy rats with/without the inhibition of peripheral aromatic l-amino acid decarboxylase by benserazide pretreatment (n = 3 each), in mice bearing subcutaneous MCF-7 or PC-3 tumor xenografts (n = 10), and in rats bearing orthotopic U87 MG tumor xenografts (n = 14). Tracer accumulation was quantified by SUVmax, SUVmean and tumor-to-brain ratios (TBrR). RESULTS: The uptake of 3-l-[18F]FPhe in MCF-7 and PC-3 cells was significantly higher relative to [18F]FET. The uptake of all three tracers was significantly reduced by the suppression of amino acid transport systems L or ASC. 3-l-[18F]FPhe but not 3-d-[18F]FPhe exhibited protein incorporation. In benserazide-treated healthy rats, brain uptake after 42-120 min was significantly higher for 3-d-[18F]FPhe vs. 3-l-[18F]FPhe. [18F]FET showed significantly higher uptake into subcutaneous MCF-7 tumors (52-60 min p.i.), while early uptake into orthotopic U87 MG tumors was significantly higher for 3-l-[18F]FPhe (SUVmax: 3-l-[18F]FPhe, 107.6 ± 11.3; 3-d-[18F]FPhe, 86.0 ± 4.3; [18F]FET, 90.2 ± 7.7). Increased tumoral expression of LAT1 and ASCT2 was confirmed immunohistologically. CONCLUSION: Both novel tracers enable accurate tumor delineation with an imaging quality comparable to [18F]FET.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...