Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
ArXiv ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38495560

RESUMEN

We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions that can capture the observed behavior across imaging and sequencing based measures of chromatin organization. From nucleosome to chromosome scales, the model captures the overall chromatin organization as a corrugated system, with dense and dilute regions alternating in a manner that resembles the mixing of two disordered bi-continuous phases. This particular organizational topology is a consequence of the multiplicity of interactions and processes ocurring in the nuclei, and mimicked by the proposed return rules. Single configuration properties and ensemble averages show a robust agreement between theoretical and experimental results including chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. Model and experimental results suggest that there is an inherent chromatin organization regardless of the cell character and resistent to external forcings such as Rad21 degradation.

2.
Sci Rep ; 13(1): 16523, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783724

RESUMEN

The field-dependent relaxation dynamics of suspended magnetic nanoparticles continues to present a fascinating topic of basic science that at the same time is highly relevant for several technological and biomedical applications. Renewed interest in the intriguing behavior of magnetic nanoparticles in response to external fields has at least in parts be driven by rapid advances in magnetic fluid hyperthermia research. Although a wealth of experimental, theoretical, and simulation studies have been performed in this field in recent years, several contradictory findings have so far prevented the emergence of a consistent picture. Here, we present a dynamic mean-field theory together with comprehensive computer simulations of a microscopic model system to systematically discuss the influence of several key parameters on the relaxation dynamics, such as steric and dipolar interactions, the external magnetic field strength and frequency, as well as the ratio of Brownian and Néel relaxation time. We also discuss the specific and intrinsic loss power as measures of the efficiency of magnetic fluid heating and discuss optimality conditions in terms of fluid and field parameters. Our results are helpful to reconcile contradictory findings in the literature and provide an important step towards a more consistent understanding. In addition, our findings also help to select experimental conditions that optimize magnetic fluid heating applications.

3.
Res Sq ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37886531

RESUMEN

We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions that is able to capture the observed behavior across imaging and sequencing based measures of chromatin organization. The SR-EV model takes the return rules of the Self Returning Random Walk, incorporates excluded volume interactions, chain connectivity and expands the length scales range from 10 nm to over 1 micron. The model is computationally fast and we created thousands of configurations that we grouped in twelve different ensembles according to the two main parameters of the model. The analysis of the configurations was done in a way completely analogous to the experimental treatments used to determine chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. We find a robust agreement between the theoretical and experimental results. The overall organization of the model chromatin is corrugated, with dense packing domains alternating with a very dilute regions in a manner that resembles the mixing of two disordered bi-continuous phases. The return rules combined with excluded volume interactions lead to the formation of packing domains. We observed a transition from a short scale regime to a long scale regime occurring at genomic separations of ~ 4 × 104 base pairs or ~ 100 nm in distance. The contact probability reflects this transition with a change in the scaling exponent from larger than -1 to approximately -1. The analysis of the pair correlation function reveals that chromatin organizes following a power law scaling with exponent D∈{2,3} in the transition region between the short and long distance regimes.

4.
Phys Rev E ; 107(4-1): 044604, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198810

RESUMEN

Rod-shaped particles embedded in certain matrices have been reported to exhibit an increase in their center of mass diffusivity upon increasing the matrix density. This increase has been considered to be caused by a kinetic constraint in analogy with tube models. We investigate a mobile rodlike particle in a sea of immobile point obstacles using a kinetic Monte Carlo scheme equipped with a Markovian process, that generates gaslike collision statistics, so that such kinetic constraints do essentially not exist. Even in such a system, provided the particle's aspect ratio exceeds a threshold value of about 24, the unusual increase in the rod diffusivity emerges. This result implies that the kinetic constraint is not a necessary condition for the increase in the diffusivity.

5.
Polymers (Basel) ; 15(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37242983

RESUMEN

Protein adsorption by polymerized surfaces is an interdisciplinary topic that has been approached in many ways, leading to a plethora of theoretical, numerical and experimental insight. There is a wide variety of models trying to accurately capture the essence of adsorption and its effect on the conformations of proteins and polymers. However, atomistic simulations are case-specific and computationally demanding. Here, we explore universal aspects of the dynamics of protein adsorption through a coarse-grained (CG) model, that allows us to explore the effects of various design parameters. To this end, we adopt the hydrophobic-polar (HP) model for proteins, place them uniformly at the upper bound of a CG polymer brush whose multibead-spring chains are tethered to a solid implicit wall. We find that the most crucial factor affecting the adsorption efficiency appears to be the polymer grafting density, while the size of the protein and its hydrophobicity ratio come also into play. We discuss the roles of ligands and attractive tethering surfaces to the primary adsorption as well as secondary and ternary adsorption in the presence of attractive (towards the hydrophilic part of the protein) beads along varying spots of the backbone of the polymer chains. The percentage and rate of adsorption, density profiles and the shapes of the proteins, alongside with the respective potential of mean force are recorded to compare the various scenarios during protein adsorption.

6.
Macromolecules ; 56(4): 1303-1310, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36874533

RESUMEN

Fracture phenomena in soft materials span multiple length and time scales. This poses a major challenge in computational modeling and predictive materials design. To pass quantitatively from molecular to continuum scales, a precise representation of the material response at the molecular level is vital. Here, we derive the nonlinear elastic response and fracture characteristics of individual siloxane molecules using molecular dynamics (MD) studies. For short chains, we find deviations from classical scalings for both the effective stiffness and mean chain rupture times. A simple model of a nonuniform chain of Kuhn segments captures the observed effect and agrees well with MD data. We find that the dominating fracture mechanism depends on the applied force scale in a nonmonotonic fashion. This analysis suggests that common polydimethylsiloxane (PDMS) networks fail at cross-linking points. Our results can be readily lumped into coarse-grained models. Although focusing on PDMS as a model system, our study presents a general procedure to pass beyond the window of accessible rupture times in MD studies employing mean first passage time theory, which can be exploited for arbitrary molecular systems.

7.
Phys Rev E ; 107(1-2): 015307, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36797966

RESUMEN

The geometric pore size distribution (PSD) P(r) as function of pore radius r is an important characteristic of porous structures, including particle-based systems, because it allows us to analyze adsorption behavior, the strength of materials, etc. Multiple definitions and corresponding algorithms, particularly in the context of computational approaches, exist that aim at calculating a PSD, often without mentioning the employed definition and therefore leading to qualitatively very different and apparently incompatible results. Here, we analyze the differences between the PSDs introduced by Torquato et al. and the more widely accepted one provided by Gelb and Gubbins, here denoted as T-PSD and G-PSD, respectively, and provide rigorous mathematical definitions that allow us to quantify the qualitative differences. We then extend G-PSD to incorporate the ideas of coating, which is significant for nanoparticle-based systems, and of finite probe particles, which is crucial to micro and mesoporous particles. We derive how the extended and classical versions are interrelated and how to calculate them properly. We next analyze various numerical approaches used to calculate classical G-PSDs and may be used to calculate the generalized G-PSD. To this end, we propose a simple yet sufficiently complicated benchmark for which we calculate the different PSDs analytically. This approach allows us to completely rule out a recently proposed algorithm based on radical Voronoi tessellation. Instead, we find and prove that the output of a grid-free classical Voronoi tessellation, namely, the properties of its triangulated faces, can be used to formulate an algorithm, which is capable of calculating the generalized G-PSD for a system of monodisperse spherical particles (or points) to any precision, using analytical expressions. The Voronoi-based algorithm developed and provided here has optimal scaling behavior and outperforms grid-based approaches.

8.
Chaos ; 32(9): 093127, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36182393

RESUMEN

We study the deterministic dynamics of N point particles moving at a constant speed in a 2D table made of two polygonal urns connected by an active rectangular channel, which applies a feedback control on the particles, inverting the horizontal component of their velocities when their number in the channel exceeds a fixed threshold. Such a bounce-back mechanism is non-dissipative: it preserves volumes in phase space. An additional passive channel closes the billiard table forming a circuit in which a stationary current may flow. Under specific constraints on the geometry and on the initial conditions, the large N limit allows nonequilibrium phase transitions between homogeneous and inhomogeneous phases. The role of ergodicity in making a probabilistic theory applicable is discussed for both rational and irrational urns. The theoretical predictions are compared with the numerical simulation results. Connections with the dynamics of feedback-controlled biological systems are highlighted.


Asunto(s)
Simulación por Computador
9.
Polymers (Basel) ; 14(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956584

RESUMEN

Ionic polymers exhibit mechanical properties that can be widely tuned upon selectively charging them. However, the correlated structural and dynamical properties underlying the microscopic mechanism remain largely unexplored. Here, we investigate, for the first time, the structure and diffusion of randomly and end-functionalized ionic poly(dimethylsiloxane) (PDMS) melts with negatively charged bromide counterions, by means of atomistic molecular dynamics using a united atom model. In particular, we find that the density of the ionic PDMS melts exceeds the one of their neutral counterpart and increases as the charge density increases. The counterions are condensed to the cationic part of end-functionalized cationic PDMS chains, especially for the higher molecular weights, leading to a slow diffusion inside the melt; the counterions are also correlated more strongly to each other for the end-functionalized PDMS. Temperature has a weak effect on the counterion structure and leads to an Arrhenius type of behavior for the counterion diffusion coefficient. In addition, the charge density of PDMS chains enhances the diffusion of counterions especially at higher temperatures, but hinders PDMS chain dynamics. Neutral PDMS chains are shown to exhibit faster dynamics (diffusion) than ionic PDMS chains. These findings contribute to the theoretical description of the correlations between structure and dynamical properties of ion-containing polymers.

10.
Macromolecules ; 55(9): 3613-3626, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35571224

RESUMEN

We combine molecular dynamics simulations and topological analyses (TA) to validate and refine a recently proposed unified analytic model [Hoy, R. S.; Kröger, M. Phys. Rev. Lett. 2020, 124, 147801] for the reduced entanglement length, tube diameter, and plateau modulus of polymer melts. While the functional forms of the previously published expressions are insensitive to the choice of the TA method and N e -estimator, obtaining better statistics and eliminating all known sources of systematic error in the N e -estimation alters their numerical coefficients. Our revised expressions quantitatively match bead-spring simulation data over the entire range of chain stiffnesses for which systems remain isotropic, semiquantitatively match all available experimental data for flexible, semiflexible, and stiff polymer melts (including new data for conjugated polymers that lie in a previously unpopulated stiffness regime), and outperform previously developed unified scaling theories.

11.
MRS Bull ; 47(12): 1185-1197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36846500

RESUMEN

Abstract: Poly(dimethylsiloxane) (PDMS)-based nanocomposites have attracted increasing attention due to their inherent outstanding properties. Nevertheless, the realization of high levels of dispersion of nanosilicas in PDMS represents a challenge arising from the poor compatibility between the two components. Herein, we explore the use of ionic interactions located at the interface between silica and a PDMS matrix by combining anionic sulfonate-functionalized silica and cationic ammonium-functionalized PDMS. A library of ionic PDMS nanocomposites was synthesized and characterized to highlight the impact of charge location, density, and molecular weight of ionic PDMS polymers on the dispersion of nanosilicas and the resulting mechanical reinforcement. The use of reversible ionic interactions at the interface of nanoparticles-polymer matrix enables the healing of scratches applied to the surface of the nanocomposites. Molecular dynamics simulations were used to estimate the survival probability of ionic cross-links between nanoparticles and the polymer matrix, revealing a dependence on polymer charge density. Impact statement: Poly(dimethylsiloxane) (PDMS) has been widely used in diverse applications due to its inherent attractive and multifunctional properties including optical transparency, high flexibility, and biocompatibility. The combination of such properties in a single polymer matrix has paved the way toward a wide range of applications in sensors, electronics, and biomedical devices. As a liquid at room temperature, the cross-linking of the PDMS turns the system into a mechanically stable elastomer for several applications. Nanofillers have served as a reinforcing agent to design PDMS nanocomposites. However, due to significant incompatibility between silica and the PDMS matrix, the dispersion of nanosilica fillers has been challenging. One of the existing strategies to improve nanoparticle dispersion consists of grafting oppositely charged ionic functional groups to the nanoparticle surface and the polymer matrix, respectively, creating nanoparticle ionic materials. Here, this approach has been explored further to improve the dispersion of nanosilicas in a PDMS matrix. The designed ionic PDMS nanocomposites exhibit self-healing properties due to the reversible nature of ionic interactions. The developed synthetic approach can be transferred to other kinds of inorganic nanoparticles dispersed in a PDMS matrix, where dispersion at the nanometer scale is a prerequisite for specific applications such as encapsulants for light-emitting diodes (LEDs). Supplementary information: The online version contains supplementary material available at 10.1557/s43577-022-00346-x.

12.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615912

RESUMEN

Ionic nanoparticle organic hybrids have been the focus of research for almost 20 years, however the substitution of ionic canopy by an ionic-entangled polymer matrix was implemented only recently, and can lead to the formulation of ionic nanocomposites. The functionalization of nanoparticle surface by covalently grafting a charged ligand (corona) interacting electrostatically with the oppositely charged canopy (polymer matrix) can promote the dispersion state and stability which are prerequisites for property "tuning", polymer reinforcement, and fabrication of high-performance nanocomposites. Different types of nanoparticle, shape (spherical or anisotropic), loading, graft corona, polymer matrix type, charge density, molecular weight, can influence the nanoparticle dispersion state, and can alter the rheological, mechanical, electrical, self-healing, and shape-memory behavior of ionic nanocomposites. Such ionic nanocomposites can offer new properties and design possibilities in comparison to traditional polymer nanocomposites. However, to achieve a technological breakthrough by designing and developing such ionic nanomaterials, a synergy between experiments and simulation methods is necessary in order to obtain a fundamental understanding of the underlying physics and chemistry. Although there are a few coarse-grained simulation efforts to disclose the underlying physics, atomistic models and simulations that could shed light on the interphase, effect of polymer and nanoparticle chemistry on behavior, are completely absent.

13.
Polymers (Basel) ; 13(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34833305

RESUMEN

We explore the behavior of coarse-grained ionic polymer nanocomposites (IPNCs) under uniaxial extension up to 800% strain by means of nonequilibrium molecular dynamics simulations. We observe a simultaneous increase of stiffness and toughness of the IPNCs upon increasing the engineering strain rate, in agreement with experimental observations. We reveal that the excellent toughness of the IPNCs originates from the electrostatic interaction between polymers and nanoparticles, and that it is not due to the mobility of the nanoparticles or the presence of polymer-polymer entanglements. During the extension, and depending on the nanoparticle volume fraction, polymer-nanoparticle ionic crosslinks are suppressed with the increase of strain rate and electrostatic strength, while the mean pore radius increases with strain rate and is altered by the nanoparticle volume fraction and electrostatic strength. At relatively low strain rates, IPNCs containing an entangled matrix exhibit self-strengthening behavior. We provide microscopic insight into the structural, conformational properties and crosslinks of IPNCs, also referred to as polymer nanocomposite electrolytes, accompanying their unusual mechanical behavior.

14.
Physica D ; 425: 132981, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34188342

RESUMEN

An analytic evaluation of the peak time of a disease allows for the installment of effective epidemic precautions. Recently, an explicit analytic, approximate expression (MT) for the peak time of the fraction of infected persons during an outbreak within the susceptible-infectious-recovered/removed (SIR) model had been presented and discussed (Turkyilmazoglu, 2021). There are three existing approximate solutions (SK-I, SK-II, and CG) of the semi-time SIR model in its reduced formulation that allow one to come up with different explicit expressions for the peak time of the infected compartment (Schlickeiser and Kröger, 2021; Carvalho and Gonçalves, 2021). Here we compare the four expressions for any choice of SIR model parameters and find that SK-I, SK-II and CG are more accurate than MT as long as the amount of population to which the SIR model is applied exceeds hundred by far (countries, ss, cities). For small populations with less than hundreds of individuals (families, small towns), however, the approximant MT outperforms the other approximants. To be able to compare the various approaches, we clarify the equivalence between the four-parametric dimensional SIR equations and their two-dimensional dimensionless analogue. Using Covid-19 data from various countries and sources we identify the relevant regime within the parameter space of the SIR model.

15.
Soft Matter ; 17(26): 6362-6373, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34128028

RESUMEN

Conformations, entanglements and dynamics in attractive polymer nanocomposites are investigated in this work by means of coarse-grained molecular dynamics simulation, for both weak and strong confinements, in the presence of nanoparticles (NPs) at NP volume fractions φ up to 60%. We show that the behavior of the apparent tube diameter dapp in such nanocomposites can be greatly different from nanocomposites with nonattractive interactions. We find that this effect originates, based on a mean field argument, from the geometric confinement length dgeo at strong confinement (large φ) and not from the bound polymer layer on NPs (interparticle distance ID <2Rg) as proposed recently based on experimental measurements. Close to the NP surface, the entangled polymer mobility is reduced in attractive nanocomposites but still faster than the NP mobility for volume fractions beyond 20%. Furthermore, entangled polymer dynamics is hindered dramatically by the strong confinement created by NPs. For the first time using simulations, we show that the entangled polymer conformation, characterized by the polymer radius of gyration Rg and form factor, remains basically unperturbed by the presence of NPs up to the highest volume fractions studied, in agreement with various experiments on attractive nanocomposites. As a side-result we demonstrate that the loose concept of ID can be made a microscopically well defined quantity using the mean pore size of the NP arrangement.

16.
Polymers (Basel) ; 13(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374327

RESUMEN

This editorial deals with the most cited papers published in the years 2018-2019 in the section "Polymer Theory and Simulation" of the journal Polymers [...].

17.
Polymers (Basel) ; 12(11)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158229

RESUMEN

We investigate nanoparticle (NP) dispersion, polymer conformations, entanglements and dynamics in ionic nanocomposites. To this end, we study nanocomposite systems with various spherical NP loadings, three different molecular weights, two different Bjerrum lengths, and two types of charge-sequenced polymers by means of molecular dynamics simulations. NP dispersion can be achieved in either oligomeric or entangled polymeric matrices due to the presence of electrostatic interactions. We show that the overall conformations of ionic oligomer chains, as characterized by their radii of gyration, are affected by the presence and the amount of charged NPs, while the dimensions of charged entangled polymers remain unperturbed. Both the dynamical behavior of polymers and NPs, and the lifetime and amount of temporary crosslinks, are found to depend on the ratio between the Bjerrum length and characteristic distance between charged monomers. Polymer-polymer entanglements start to decrease beyond a certain NP loading. The dynamics of ionic NPs and polymers is very different compared with their non-ionic counterparts. Specifically, ionic NP dynamics is getting enhanced in entangled matrices and also accelerates with the increase of NP loading.

18.
Phys Chem Chem Phys ; 22(39): 22244-22259, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33001111

RESUMEN

The intriguing properties of magnetic nanoparticles have sparked a growing number of theoretical studies as well as practical applications. Here, we provide the first comprehensive study of the influence of interactions on the two main relaxation mechanisms: internal (Néel) and Brownian relaxation. While non-interacting magnetic nanoparticles show Debye behavior with an effective relaxation time, many authors use this model also for the interacting case. Since Néel relaxation is typically a thermally activated process on times scales that are many orders of magnitude larger than the underlying micromagnetic times, we use extensive computer simulations employing a Brownian dynamics/Monte-Carlo algorithm to show that dipolar interactions lead to significant deviations from the Debye behavior. We find that Néel and Brownian relaxation can be considered as independent processes for short enough times until dipolar interactions lead to a coupling of these mechanisms, making the interpretation more difficult. We provide mean-field arguments that describe these short and long-time, effective relaxation times well for weak up to moderate interaction strengths. Our findings about the coupling of Brownian and Néel process and the effective relaxation time provide an important theoretical insight that will have also important consequences for the interpretation of magnetic susceptibility measurements and magnetorelaxometry analysis.

19.
Phys Rev Lett ; 124(14): 147801, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32338959

RESUMEN

By combining molecular dynamics simulations and topological analyses with scaling arguments, we obtain analytic expressions that quantitatively predict the entanglement length N_{e}, the plateau modulus G, and the tube diameter a in melts that span the entire range of chain stiffnesses for which systems remain isotropic. Our expressions resolve conflicts between previous scaling predictions for the loosely entangled [Lin-Noolandi, Gℓ_{K}^{3}/k_{B}T∼(ℓ_{K}/p)^{3}], semiflexible [Edwards-de Gennes: Gℓ_{K}^{3}/k_{B}T∼(ℓ_{K}/p)^{2}], and tightly entangled [Morse, Gℓ_{K}^{3}/k_{B}T∼(ℓ_{K}/p)^{1+ϵ}] regimes, where ℓ_{K} and p are, respectively, the Kuhn and packing lengths. We also find that maximal entanglement (minimal N_{e}) coincides with the onset of local nematic order.

20.
RSC Adv ; 10(32): 18655-18676, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35518281

RESUMEN

Enzyme-catalysed cascade reactions in flow-through systems with immobilised enzymes currently are of great interest for exploring their potential for biosynthetic and bioanalytical applications. Basic studies in this field often aim at understanding the stability of the immobilised enzymes and their catalytic performance, for example, in terms of yield of a desired reaction product, analyte detection limit, enzyme stability or reaction reproducibility. In the work presented, a cascade reaction involving the two enzymes bovine carbonic anhydrase (BCA) and horseradish peroxidase (HRP) - with hydrogen peroxide (H2O2) as HRP "activator" - was first investigated in great detail in bulk solution at pH = 7.2. The reaction studied is the hydrolysis and oxidation of 2',7'-dichlorodihydrofluorescein diacetate (DCFH2-DA) to 2',7'-dichlorofluorescein (DCF), which was found to proceed along two reaction pathways. This two-enzyme cascade reaction was then applied for analysing the performance of BCA and HRP immobilised in glass fiber filters which were placed inside a filter holder device through which a DCFH2-DA/H2O2 substrate solution was pumped. Comparison was made between (i) co-immobilised and (ii) sequentially immobilised enzymes (BCA first, HRP second). Significant differences for the two arrangements in terms of measured product yield (DCF) could be explained based on quantitative UV/vis absorption measurements carried out in bulk solution. We found that the lower DCF yield observed for sequentially immobilised enzymes originates from a change in one of the two possible reaction pathways due to enzyme separation, which was not the case for enzymes that were co-immobilised (or simultaneously present in the bulk solution experiments). The higher DCF yield observed for co-immobilised enzymes did not originate from a molecular proximity effect (no increased oxidation compared to sequential immobilisation).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...