Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 40(29): 8531-5, 2001 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-11456491

RESUMEN

Several elongation factor (EF) Tu mutants (T25A, H22Y/T25S, D80N, D138N) that have impaired nucleotide binding show decreased solubility on overexpression in the E. coli cell, an indication that they do not fold correctly. Moreover, EF-Tu[T25A] and EF-Tu[D80N] were shown to inhibit cell growth on expression, an effect attributed to their sequestration of EF-Ts [Krab, I. M., and Parmeggiani, A. (1999) J. Biol. Chem. 274, 11132--11138; Krab, I. M., and Parmeggiani, A. (1999) Biochemistry 38, 13035--13041]. We present here results showing that the co-overexpression of EF-Ts at a 1:1 ratio dramatically improves the solubility of mutant EF-Tu, although in the case of EF-Tu[D138N]--which cannot at all bind the nucleotides available in the cell--this is a slow process. Moreover, with co-overexpression of EF-Ts, the mentioned growth inhibition is relieved. We conclude that for the formation of a correct EF-Tu structure the nucleotide plays an important role as a "folding nucleus", and also that in its absence EF-Ts can act as a folding template or steric chaperone for the correct folding of EF-Tu.


Asunto(s)
Nucleótidos de Guanina/química , Chaperonas Moleculares/química , Factor Tu de Elongación Peptídica/química , Factores de Elongación de Péptidos/química , Escherichia coli/genética , Glutatión Transferasa/genética , Inhibidores de Crecimiento/química , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/genética , Mutagénesis Sitio-Dirigida , Factor Tu de Elongación Peptídica/biosíntesis , Factor Tu de Elongación Peptídica/genética , Factores de Elongación de Péptidos/biosíntesis , Factores de Elongación de Péptidos/genética , Plásmidos/biosíntesis , Unión Proteica , Pliegue de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Ribonucleósidos/genética , Solubilidad , Xantinas
2.
Biochemistry ; 40(25): 7474-9, 2001 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-11412100

RESUMEN

In this work, we have studied the role of the arginine finger region in determining the specificity of the GTPase activating proteins (GAPs) Saccharomyces cerevisiae Ira2p and human p120-GAP toward yeast Ras2p and human Ha-Ras p21. It is known that p120-GAP can enhance both Ras2p and Ha-Ras GTPase activities, whereas Ira2p is strictly specific for Ras2p and fails to activate Ha-Ras GTPase. Substitution in Ira2p of the arginine following the arginine finger with alanine, the residue found in the corresponding position of p120-GAP, or by glycine as found in neurofibromin, evokes a low but significant stimulation of Ha-Ras GTPase. The stimulatory activity of Ira2p on Ha-Ras increased by substituting segments of the finger loop region with p120-GAP residues, especially with the six residues forming the tip of the arginine loop. In p120-GAP, substitution of the entire finger loop with the corresponding region of Ira2p led to a construct completely inactive on Ha-Ras GTPase but active on yeast Ras2p GTPase. Analysis of these results and modeling of Ira2p.Ras complexes emphasize the importance of the finger loop region not only for the catalytic activity but also as a structural determinant involved in the specificity of GAPs toward Ras proteins from different organisms.


Asunto(s)
Arginina/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Arginina/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Datos de Secuencia Molecular , Mutagénesis Insercional , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Especificidad por Sustrato/genética , Proteína Activadora de GTPasa p120/biosíntesis , Proteína Activadora de GTPasa p120/genética , Proteína Activadora de GTPasa p120/aislamiento & purificación , Proteínas Activadoras de ras GTPasa/genética , Proteínas ras/metabolismo
3.
Biochemistry ; 38(40): 13035-41, 1999 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-10529173

RESUMEN

The properties of variants of elongation factor (EF) Tu mutated at three positions implicated in its GTPase activity are presented. Mutation I60A, which reduces one wing of a "hydrophobic barrier" screening off the nucleophilic water molecule found at the GTP gamma-phosphate, causes a reduction of the intrinsic GTPase activity contrary to prediction and has practically no influence on other properties. Mutation D80N, which in the isolated G-domain of EF-Tu caused a strong stimulation of the intrinsic GTPase, reduces this activity in the intact molecule. However, whereas for wild-type EF-Tu complex formation with aa-tRNA reduces the GTPase, EF-Tu[D80N] shows a strongly increased activity when bound to Phe-tRNA. Moreover, ribosomes or kirromycin can stimulate its GTPase up to the same level as for wild-type. This indicates that a local destabilization of the magnesium binding network does not per se cause an increased GTPase but does affect its tight regulation. Interestingly, mutant D80N sequestrates EF-Ts by formation of a more stable complex. Substitutions T61A and T61N induce low intrinsic GTPase, and the stimulation by ribosome is less for T61A than for T61N but still detectable, while kirromycin stimulates the GTPase of both mutants equally. This provides more evidence that stimulation by kirromycin and ribosomes follows a different mechanism. The functional implications of these mutations are discussed in the context of a transition state mechanism for catalysis. An alternative structural explanation for the strong conservation of Ile-60 is proposed.


Asunto(s)
Ácido Aspártico/genética , GTP Fosfohidrolasas/genética , Isoleucina/genética , Mutagénesis Sitio-Dirigida , Factor Tu de Elongación Peptídica/genética , Treonina/genética , Sitios de Unión/genética , Escherichia coli/enzimología , Escherichia coli/genética , Ésteres , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/biosíntesis , Factor Tu de Elongación Peptídica/metabolismo , Péptidos/síntesis química , Piridonas/química , ARN de Transferencia de Fenilalanina/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Ribosomas/metabolismo
4.
J Biol Chem ; 274(16): 11132-8, 1999 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-10196198

RESUMEN

Elongation factor (EF) Tu Thr-25 is a key residue binding the essential magnesium complexed to nucleotide. We have characterized mutations at this position to the related Ser and to Ala, which abolishes the bond to Mg2+, and a double mutation, H22Y/T25S. Nucleotide interaction was moderately destabilized in EF-Tu(T25S) but strongly in EF-Tu(T25A) and EF-Tu(H22Y/T25S). Binding Phe-tRNAPhe to poly(U).ribosome needed a higher magnesium concentration for the latter two mutants but was comparable at 10 mM MgCl2. Whereas EF-Tu(T25S) synthesized poly(Phe), as effectively as wild type, the rate was reduced to 50% for EF-Tu(H22Y/T25S) and was, surprisingly, still 10% for EF-Tu(T25A). In contrast, protection of Phe-tRNAPhe against spontaneous hydrolysis by the latter two mutants was very low. The intrinsic GTPase in EF-Tu(H22Y/T25S) and (T25A) was reduced, and the different responses to ribosomes and kirromycin suggest that stimulation by these two agents follows different mechanisms. Of the mutants, only EF-Tu(T25A) forms a more stable complex with EF-Ts than wild type. This implies that stabilization of the EF-Tu.EF-Ts complex is related to the inability to bind Mg2+, rather than to a decreased nucleotide affinity. These results are discussed in the light of the three-dimensional structure. They emphasize the importance of the Thr-25-Mg2+ bond, although its absence is compatible with protein synthesis and thus with an active overall conformation of EF-Tu.


Asunto(s)
Magnesio/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Treonina/metabolismo , Factores de Elongación Enlazados a GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/aislamiento & purificación , Unión Proteica , Conformación Proteica , Piridonas/farmacología , ARN de Transferencia de Fenilalanina/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Relación Estructura-Actividad
6.
EMBO J ; 15(10): 2604-11, 1996 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-8665868

RESUMEN

This work analyzes the action of enacyloxin Ila, an inhibitor of bacterial protein biosynthesis. Enacyloxin IIa [IC50 on poly(Phe) synthesis approximately 70 nM] is shown to affect the interaction between elongation factor (EF) Tu and GTP or GDP; in particular, the dissociation of EF-Tu-GTP is strongly retarded, causing the Kd of EF- Tu-GTP to decrease from 500 to 0.7 nM. In its presence, the migration velocity of both GTP- and GDP-bound EF-Tu on native PAGE is increased. The stimulation of EF-Tu-GDP dissociation by EF-Ts is inhibited. EF- Tu-GTP can still form a stable complex with aminoacyl-tRNA (aa-tRNA), but it no longer protects aa-tRNA against spontaneous deacylation, showing that the EF-Tu-GTP orientation with respect to the 3' end of aa-tRNA is modified. However, the EF-Tu-dependent binding of aa-tRNA to the ribosomal A-site is impaired only slightly by the antibiotic and the activity of the peptidyl-transferase center, as determined by puromycin reactivity, is not affected. In contrast, the C-terminal incorporation of Phe into poly(Phe)-tRNA bound to the P-site is inhibited, an effect that is observed if Phe-tRNA is bound to the A-site nonenzymatically as well. Thus, enacyloxin IIa can affect both EF-Tu and the ribosomal A-site directly, inducing an anomalous positioning of aa-tRNA, that inhibits the incorporation of the amino acid into the polypeptide chain. Therefore, it is the first antibiotic found to have a dual specificity targeted to EF-Tu and the ribosome.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/efectos de los fármacos , Proteínas Bacterianas/biosíntesis , Electroforesis en Gel de Poliacrilamida , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Factores de Elongación Enlazados a GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Estructura Molecular , Polienos/farmacología , Aminoacil-ARN de Transferencia/metabolismo
7.
FEBS Lett ; 365(2-3): 214-8, 1995 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-7781781

RESUMEN

Substitution of His-84 (-->Gln and -->Ala), a residue of the switch II region of E. coli elongation factor (EF) Tu, hardly affected the binding of GTP or GDP. The activity in poly(Phe) synthesis and GTP hydrolysis of EF-Tu H84Q were both reduced to about 35%, as compared to EF-Tu wt, whereas EF-Tu H84A was inactive in poly(Phe) synthesis but still showed a 10% residual GTPase activity. Phe-tRNAPhe exerted a similar inhibitory effect on the GTPase activity of EF-Tu wt and EF-Tu H84Q while abolishing that of EF-Tu H84A. Ribosomes enhanced the GTPase activity of EF-Tu H84Q, but not that of EF-Tu H84A, on which they even seemed to exert an inhibitory effect. The one-round GTP hydrolysis associated with the EF-TuH84Q-dependent binding of Phe-tRNAPhe to poly(U)-programmed ribosomes was less efficient than with EF-Tu wt. Kirromycin stimulated the GTPase activities of both mutants less than EF-Tu wt. The results of this work do not support a catalytic role of His-84 in the intrinsic GTPase of EF-Tu, but they emphasize the importance of its side-chain for polypeptide synthesis and GTP hydrolysis.


Asunto(s)
Escherichia coli/metabolismo , Factores de Elongación Enlazados a GTP Fosfohidrolasas/metabolismo , Histidina , Factor Tu de Elongación Peptídica/metabolismo , Péptidos , Alanina , Secuencia de Aminoácidos , Clonación Molecular , Escherichia coli/genética , Glutamina , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Biosíntesis de Péptidos , Mutación Puntual , Proteínas Recombinantes/metabolismo
8.
Microbiology (Reading) ; 140 ( Pt 12): 3357-65, 1994 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-7533593

RESUMEN

Transcription start sites and processing sites of the Streptomyces coelicolor A3(2) rrnA operon have been investigated by a combination of in vivo and in vitro transcription analyses. The data from these approaches are consistent with the existence of four in vivo transcription sites, corresponding to the promoters P1-P4. The transcription start sites are located at -597, -416, -334 and -254 relative to the start of the 16S rRNA gene. Two putative processing sites were identified, one of which is similar to a sequence reported earlier in S. coelicolor and other eubacteria. The P1 promoter is likely to be recognized by the RNA polymerase holoenzyme containing sigma hrdB, the principal sigma factor in S. coelicolor. P2 also shares homology with the consensus for vegetative promoters, but has a sequence overlapping the consensus -35 region that is also present in the -35 regions of P3 and P4. The -35 sequence common to P2, P3 and P4 is not similar to any other known consensus promoter sequence. In fast-growing mycelium, P2 appears to be the most frequently used promoter. Transcription from all of the rrnA promoters decreased during the transition from exponential to stationary phase, although transcription from P1 and P2 ceased several hours before that from P3 and P4.


Asunto(s)
Genes Bacterianos , Operón , Streptomyces/genética , Secuencia de Bases , Mapeo Cromosómico , Cartilla de ADN/genética , ADN Bacteriano/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Homología de Secuencia de Ácido Nucleico , Endonucleasas Específicas del ADN y ARN con un Solo Filamento , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...