Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 7, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167240

RESUMEN

High refractive index dielectric nanoantennas strongly modify the decay rate via the Purcell effect through the design of radiative channels. Due to their dielectric nature, the field is mainly confined inside the nanostructure and in the gap, which is hard to probe with scanning probe techniques. Here we use single-molecule fluorescence lifetime imaging microscopy (smFLIM) to map the decay rate enhancement in dielectric GaP nanoantenna dimers with a median localization precision of 14 nm. We measure, in the gap of the nanoantenna, decay rates that are almost 30 times larger than on a glass substrate. By comparing experimental results with numerical simulations we show that this large enhancement is essentially radiative, contrary to the case of plasmonic nanoantennas, and therefore has great potential for applications such as quantum optics and biosensing.

2.
Opt Express ; 29(18): 29034-29043, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34615021

RESUMEN

The development of integrated photonic devices has led to important advancements in the field of light-matter interaction at the nanoscale. One of the main focal points is the coupling between single photon emitters and optical waveguides aiming to achieve efficient optical confinement and propagation. In this work, we focus on the characterization of a hybrid dielectric/plasmonic waveguide consisting of a gold triangular nanoantenna placed on top of a TiO2 waveguide. The strong directionality of the device is experimentally demonstrated by comparing the intensity scattered by the nanotriangle to the one scattered by a SNOM tip for different illumination geometries. The ability of the plasmonic antenna to generate powerful coupling between a single emitter and the waveguide will also be highlighted through numerical simulations.

3.
Opt Lett ; 46(5): 981-984, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649637

RESUMEN

The study of hybrid modes in a single dimer of neighboring antennas is an essential step to optimize the far-field electromagnetic (EM) response of large-scale metasurfaces or any complex antenna structure made up of subwavelength building blocks. Here we present far-field infrared spatial modulation spectroscopy (IR-SMS) measurements of a single thermally excited asymmetric dimer of square metal-insulator-metal (MIM) antennas separated by a nanometric gap. Through thermal fluctuations, all the EM modes of the antennas are excited, and hybrid bonding and anti-bonding modes can be observed simultaneously. We study the latter within a plasmon hybridization model, and analyze their effect on the far-field response.

4.
Opt Express ; 27(15): 21239-21252, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510207

RESUMEN

Measuring the lifetime of fluorescent emitters by time-correlated single photon counting (TCSPC) is a routine procedure in many research areas spanning from nanophotonics to biology. The precision of such measurement depends on the number of detected photons but also on the various sources of noise arising from the measurement process. Using Fisher information theory, we calculate the lower bound on the precision of lifetime estimations for mono-exponential and bi-exponential distributions. We analyse the dependence of the lifetime estimation precision on experimentally relevant parameters, including the contribution of a non-uniform background noise and the instrument response function (IRF) of the setup. We also provide an open-source code to determine the lower bound on the estimation precision for any experimental conditions. Two practical examples illustrate how this tool can be used to reach optimal precision in time-resolved fluorescence microscopy.

5.
Opt Express ; 27(2): 350-357, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30696122

RESUMEN

We present a direct experimental investigation of the optical field distribution around a suspended tapered optical nanofiber by means of a fluorescent scanning probe. Using a 100 nm diameter fluorescent bead as a probe of the field intensity, we study interferences made by a nanofiber (400 nm diameter) scattering a plane wave (568 nm wavelength). Our scanning fluorescence near-field microscope maps the optical field over 36 µm2, with λ/5 resolution, from contact with the surface of the nanofiber to a few micrometers away. Comparison between experiments and Mie scattering theory allows us to precisely determine the emitter-nanofiber distance and experimental drifts.

6.
Phys Rev Lett ; 121(24): 243901, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608759

RESUMEN

The far-field spectral and near-field spatial responses of an individual metal-insulator-metal nanoantenna are reported, using thermal fluctuations as an internal source of the electromagnetic field. The far-field spectra, obtained by combining Fourier transform infrared spectroscopy with spatial modulation based on a light falloff effect in a confocal geometry, have revealed two distinct emission peaks attributed to the excitation of the fundamental mode of the nanoantenna at two distinct wavelengths. Superresolved near-field images of the thermally excited mode have been obtained by thermal radiation scanning tunneling microscopy. Experimental results are supported by numerical simulations showing that it is possible to excite the same mode at different wavelengths near a resonance of the insulating dielectric material forming the antenna.

7.
Opt Express ; 24(7): 7019-27, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27136995

RESUMEN

We study the intensity spatial correlation function of optical speckle patterns above a disordered dielectric medium in the multiple scattering regime. The intensity distributions are recorded by scanning near-field optical microscopy (SNOM) with sub-wavelength spatial resolution at variable distances from the surface in a range which spans continuously from the near-field (distance ≪ λ) to the far-field regime (distance ≫ λ). The non-universal behavior at sub-wavelength distances reveals the connection between the near-field speckle pattern and the internal structure of the medium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA