Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 14(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37754732

RESUMEN

The presence of resilin, an elastomeric protein, in insect vein joints provides the flexible, passive deformations that are crucial to flapping flight. This study investigated the resilin gene expression and autofluorescence dynamics among Apis mellifera (honey bee) worker age classes and drone honey bees. Resilin gene expression was determined via ddPCR on whole honey bees and resilin autofluorescence was measured in the 1m-cu, 2m-cu, Cu-V, and Cu2-V joints on the forewing and the Cu-V joint of the hindwing. Resilin gene expression varied significantly with age, with resilin activity being highest in the pupae. Autofluorescence of the 1m-cu and the Cu-V joints on the ventral forewing and the Cu-V joint on the ventral hindwing varied significantly between age classes on the left and right sides of the wing, with the newly emerged honey bees having the highest level of resilin autofluorescence compared to all other groups. The results of this study suggest that resilin gene expression and deposition on the wing is age-dependent and may inform us more about the physiology of aging in honey bees.

2.
Nat Commun ; 13(1): 2521, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534474

RESUMEN

It seems intuitively obvious that species diversity promotes functional diversity: communities with more plant species imply more varied plant leaf chemistry, more species of crops provide more kinds of food, etc. Recent literature has nuanced this view, showing how the relationship between the two can be modulated along latitudinal or environmental gradients. Here we show that even without such effects, the evolution of functional trait variance can erase or even reverse the expected positive relationship between species- and functional diversity. We present theory showing that trait-based eco-evolutionary processes force species to evolve narrower trait breadths in more tightly packed, species-rich communities, in their effort to avoid competition with neighboring species. This effect is so strong that it leads to an overall reduction in trait space coverage whenever a new species establishes. Empirical data from land snail communities on the Galápagos Islands are consistent with this claim. The finding that the relationship between species- and functional diversity can be negative implies that trait data from species-poor communities may misjudge functional diversity in species-rich ones, and vice versa.


Asunto(s)
Biodiversidad , Plantas , Ecuador , Fenotipo , Hojas de la Planta/genética , Plantas/genética
3.
Insects ; 13(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35323537

RESUMEN

Honey bee propolis is a complex, resinous mixture created by bees using plant sources such as leaves, flowers, and bud exudates. This study characterized how cropland surrounding apiaries affects the chemical composition and antimicrobial effects of propolis. The chemical composition and compound abundance of the propolis samples were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) and the antimicrobial effects were analyzed using the 50% minimum inhibitory concentration (MIC50) assay against four relevant bee pathogens, Serratia marcescens, Paenibacillus larvae, Lysinibacillus sphaericus, and Klebsiella pneumoniae. Propolis composition varied significantly with apiary, and cropland coverage predicted mean sum abundance of compounds. The apiary with the highest cropland coverage exhibited significantly higher MIC50 values for S. marcescens and K. pneumoniae compared to other apiaries. These results demonstrate that agricultural land use surrounding honey bee apiaries decreases the chemical quality and antimicrobial effects of propolis, which may have implications for the impacts of land use on hive immunity to potential pathogens.

4.
J Hered ; 111(1): 92-102, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31841140

RESUMEN

Newly arrived species on young or remote islands are likely to encounter less predation and competition than source populations on continental landmasses. The associated ecological release might facilitate divergence and speciation as colonizing lineages fill previously unoccupied niche space. Characterizing the sequence and timing of colonization on islands represents the first step in determining the relative contributions of geographical isolation and ecological factors in lineage diversification. Herein, we use genome-scale data to estimate timing of colonization in Naesiotus snails to the Galápagos islands from mainland South America. We test inter-island patterns of colonization and within-island radiations to understand their contribution to community assembly. Partly contradicting previously published topologies, phylogenetic reconstructions suggest that most Naesiotus species form island-specific clades, with within-island speciation dominating cladogenesis. Galápagos Naesiotus also adhere to the island progression rule, with colonization proceeding from old to young islands and within-island diversification occurring earlier on older islands. Our work provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galápagos lineages.


Asunto(s)
Especiación Genética , Caracoles/genética , Distribución Animal , Animales , Biodiversidad , Cronología como Asunto , Conjuntos de Datos como Asunto , Ecosistema , Ecuador , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Caracoles/clasificación
5.
Evolution ; 70(9): 2061-73, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27375214

RESUMEN

Directional evolution is one of the most compelling evolutionary patterns observed in macroevolution. Yet, despite its importance, detecting such trends in multivariate data remains a challenge. In this study, we evaluate multivariate evolution of shell shape in 93 bivalved scallop species, combining geometric morphometrics and phylogenetic comparative methods. Phylomorphospace visualization described the history of morphological diversification in the group; revealing that taxa with a recessing life habit were the most distinctive in shell shape, and appeared to display a directional trend. To evaluate this hypothesis empirically, we extended existing methods by characterizing the mean directional evolution in phylomorphospace for recessing scallops. We then compared this pattern to what was expected under several alternative evolutionary scenarios using phylogenetic simulations. The observed pattern did not fall within the distribution obtained under multivariate Brownian motion, enabling us to reject this evolutionary scenario. By contrast, the observed pattern was more similar to, and fell within, the distribution obtained from simulations using Brownian motion combined with a directional trend. Thus, the observed data are consistent with a pattern of directional evolution for this lineage of recessing scallops. We discuss this putative directional evolutionary trend in terms of its potential adaptive role in exploiting novel habitats.


Asunto(s)
Evolución Biológica , Pectinidae/anatomía & histología , Animales , Pectinidae/clasificación , Filogenia , Especificidad de la Especie
6.
Evolution ; 68(4): 1197-206, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24274647

RESUMEN

In Batesian mimicry a palatable mimic deceives predators by resembling an unpalatable model. The evolution of Batesian mimicry relies on the visual capabilities of the potential predators, as prey detection provides the selective force driving evolutionary change. We compared the visual capabilities of several potential predators to test predictions stemming from the hypothesis of Batesian mimicry between two salamanders: the model species Notophthalmus viridescens, and polymorphic mimic, Plethodon cinereus. First, we found mimicry to be restricted to coloration, but not brightness. Second, only bird predators appeared able to discriminate between the colors of models and nonmimic P. cinereus. Third, estimates of salamander conspicuousness were background dependent, corresponding to predictions only for backgrounds against which salamanders are most active. These results support the hypothesis that birds influence the evolution of Batesian mimicry in P. cinereus, as they are the only group examined capable of differentiating N. viridescens and nonmimetic P. cinereus. Additionally, patterns of conspicuousness suggest that selection from predators may drive the evolution of conspicuousness in this system. This study confirms the expectation that the visual abilities of predators may influence the evolution of Batesian mimicry, but the role of conspicuousness may be more complex than previously thought.


Asunto(s)
Percepción de Color , Color , Urodelos/anatomía & histología , Animales , Evolución Biológica , Colubridae/fisiología , Ecosistema , Massachusetts , Passeriformes/fisiología , Pigmentos Biológicos , Conducta Predatoria , Sciuridae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...