Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(19): e202319930, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38237059

RESUMEN

The first assortment of achiral pentafluorosulfanylated cyclobutanes (SF5-CBs) are now synthetically accessible through strain-release functionalization of [1.1.0]bicyclobutanes (BCBs) using SF5Cl. Methods for both chloropentafluorosulfanylation and hydropentafluorosulfanylation of sulfone-based BCBs are detailed herein, as well as proof-of-concept that the logic extends to tetrafluoro(aryl)sulfanylation, tetrafluoro(trifluoromethyl)sulfanylation, and three-component pentafluorosulfanylation reactions. The methods presented enable isolation of both syn and anti isomers of SF5-CBs, but we also demonstrate that this innate selectivity can be overridden in chloropentafluorosulfanylation; that is, an anti-stereoselective variant of SF5Cl addition across sulfone-based BCBs can be achieved by using inexpensive copper salt additives. Considering the SF5 group and CBs have been employed individually as nonclassical bioisosteres, structural aspects of these unique SF5-CB "hybrid isosteres" were then contextualized using SC-XRD. From a mechanistic standpoint, chloropentafluorosulfanylation ostensibly proceeds through a curious polarity mismatch addition of electrophilic SF5 radicals to the electrophilic sites of the BCBs. Upon examining carbonyl-containing BCBs, we also observed rare instances whereby radical addition to the 1-position of a BCB occurs. The nature of the key C(sp3)-SF5 bond formation step - among other mechanistic features of the methods we disclose - was investigated experimentally and with DFT calculations. Lastly, we demonstrate compatibility of SF5-CBs with various downstream functionalizations.

2.
Macromolecules ; 55(23): 10302-10311, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530525

RESUMEN

Conjugated polyelectrolytes (CPEs) have the potential to serve as building blocks of artificial light-harvesting systems. This is primarily due to their delocalized electronic states and potential for hierarchical self-assembly. We showed previously that inter-CPE complexes composed of oppositely charged exciton-donor and exciton-acceptor CPEs displayed efficient electronic energy transfer. However, near ionic charge equivalence, complexed CPE chains become net-neutral and thus experience a precipitous drop in aqueous solubility. To increase the stability and to rationally manipulate the phase behavior of inter-CPE complexes, we synthesized a series of highly water-soluble exciton-donor CPEs composed of alternating ionic and polar nonionic fluorene monomers. The nonionic monomer contained oligo(ethyleneglycol) sidechains of variable length. We then formed exciton donor-acceptor complexes and investigated their relative energy transfer efficiencies in the presence of a fixed exciton-acceptor CPE. We find that, even when the polar nonionic sidechains become quite long (nine ethyleneglycol units), the energy transfer efficiency is hardly affected so long as the inter-CPE network retains a net polyelectrolyte charge. However, near the onset of spontaneous phase separation, we observe a clear influence of the length of the oligo(ethyleneglycol) sidechains on the photophysics of the complex. Our results have implications for the use of polyelectrolyte phase separation to produce aqueous light-harvesting soft materials.

3.
Angew Chem Int Ed Engl ; 61(48): e202211892, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36137228

RESUMEN

We leveraged the recent increase in synthetic accessibility of SF5 Cl and Ar-SF4 Cl compounds to combine chemistry of the SF5 and SF4 Ar groups with strain-release functionalization. By effectively adding SF5 and SF4 Ar radicals across [1.1.1]propellane, we accessed structurally unique bicyclopentanes, bearing two distinct elements of bioisosterism. Upon evaluating these "hybrid isostere" motifs in the solid state, we measured exceptionally short transannular distances; in one case, the distance rivals the shortest nonbonding C⋅⋅⋅C contact reported to date. This prompted SC-XRD and DFT analyses that support the notion that a donor-acceptor interaction involving the "wing" C-C bonds is playing an important role in stabilization. Thus, these heretofore unknown structures expand the palette for highly coveted three-dimensional fluorinated building blocks and provide insight to a more general effect observed in bicyclopentanes.

4.
Angew Chem Int Ed Engl ; 61(38): e202208046, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35859267

RESUMEN

The fundamental challenge of C-F bond formation by reductive elimination has been met by compounds of select transition metals and fewer main group elements. The work detailed herein expands the list of main group elements known to be capable of reductively eliminating a C-F bond to include tellurium. Surprising and novel modes of both sp2 and sp3 C-F bond formation were observed alongside formation of TeIV cations during two separate attempts to synthesize/characterize fluorinated organotellurium(VI) cations in superacidic media (SbF5 /SO2 ClF). Following detailed low-temperature NMR experiments, the mechanisms of the two unique reductive elimination reactions were probed and investigated using density functional theory (DFT) calculations. Ultimately, we found that an "indirect" reductive elimination pathway is likely operative whereby Sb plays a key role in fluoride abstraction and C-F bond formation, as opposed to unimolecular reductive elimination from a discrete TeVI cation.

5.
Angew Chem Int Ed Engl ; 61(31): e202205088, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35580251

RESUMEN

In synthetic method development, the most rewarding path is seldom a straight line. While our initial entry into pentafluorosulfanyl (SF5 ) chemistry did not go according to plan (due to inaccessibility of reagents such as SF5 Cl at the time), a "detour" led us to establish mild and inexpensive oxidative fluorination conditions that made aryl-SF5 compound synthesis more accessible. The method involved the use of potassium fluoride and trichloroisocyanuric acid (TCICA)-a common swimming pool disinfectant-as opposed to previously employed reagents such as F2 , XeF2 , HF, and Cl2 . Thereafter, curiosity led us to explore applications of TCICA/KF as a more general approach to the synthesis of fluorinated Group 15, 16, and 17 heteroatoms in organic scaffolds; this, in turn, prompted SC-XRD, VT-NMR, computational, and physical organic studies. Ultimately, it was discovered that TCICA/KF can be used to synthesize SF5 Cl, enabling SF5 chemistry in an unexpected way.


Asunto(s)
Fluoruros , Halogenación , Fluoruros/química , Indicadores y Reactivos , Estrés Oxidativo , Compuestos de Potasio , Triazinas
6.
Bioconjug Chem ; 32(4): 794-800, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33822591

RESUMEN

ß-Elimination of drugs tethered to macromolecular carbamates provides a platform for drug half-life extension. However, the macromolecular Michael acceptor products formed upon drug release can potentially react with biological amines and thiols and may raise concerns about safety. We desired to mitigate this possibility by developing linkers that have predictable rates of ß-elimination but suppressed rates of nucleophilic addition to their Michael acceptor products. We prepared Michael acceptor products of ß-eliminative linkers that contained a methyl group at the Cß carbon or a gem-dimethyl group at the Cγ carbon and studied the kinetics of their reactions with the most prevalent biological nucleophiles-amine and thiol groups. Aza-Michael reactions with glycine are slowed about 20-fold by methylation of the ß-carbon and 175-fold with a gem-dimethyl group at the γ-carbon. Likewise, addition of the glutathione thiol to γ-gem-dimethyl Michael acceptors was retarded 7-24-fold compared to parent unsubstituted linkers. It was estimated that in an in vivo environment of ∼0.5 mM macromolecular thiols or ∼20 mM macromolecular amines-as in plasma-the reaction half-life of a typical Michael acceptor with a γ-gem-dimethyl linker could exceed 3 years for thiols or 25 years for amines. We also prepared a large series of γ-gem-dimethyl ß-eliminative linkers and showed excellent structure-activity relationships of elimination rates with corresponding unsubstituted parent linkers. Finally, we compared the first-generation unsubstituted and new gem-dimethyl ß-eliminative linkers in a once-monthly drug delivery system of a 39 amino acid peptide. Both linkers provided the desired half-life extension of the peptide, but the Michael acceptor formed from the gem-dimethyl linker was much less reactive. We conclude that the γ-gem-dimethyl ß-eliminative linkers provide high flexibility and greatly reduce potential reactions of Michael acceptor products with biologically important nucleophiles.


Asunto(s)
Preparaciones Farmacéuticas/química , Carbamatos/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Semivida , Cinética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA