Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769735

RESUMEN

It is well established that solar irradiance greatly influences tree metabolism and growth through photosynthesis, but its effects acting through individual climate metrics have not yet been well quantified. Understanding these effects is crucial for assessing the impacts of climate change on forest ecosystems. To describe the effects of solar irradiance on tree growth, we installed 110 automatic dendrometers in two old-growth mountain forest reserves in Central Europe, performed detailed terrestrial and aerial laser scanning to obtain precise tree profiles, and used these to simulate the sum of solar irradiance received by each tree on a daily basis. Generalized linear mixed-effect models were applied to simulate the probability of growth and the growth intensity over seven growing seasons. Our results demonstrated various contrasting effects of solar irradiance on the growth of canopy trees. On the one hand, the highest daily growth rates corresponded with the highest solar irradiance potentials (i.e. the longest photoperiod). Intense solar irradiance significantly decreased tree growth, through an increase in the vapor pressure deficit. These effects were consistent for all species but had different magnitude. Tree growth is the most effective on long rainy/cloudy days with low solar irradiance.

2.
Nature ; 627(8004): 564-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418889

RESUMEN

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Asunto(s)
Biodiversidad , Bosques , Mapeo Geográfico , Árboles , Modelos Biológicos , Especificidad de la Especie , Árboles/clasificación , Árboles/fisiología , Clima Tropical
3.
Commun Biol ; 6(1): 1066, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857800

RESUMEN

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.


Asunto(s)
Micorrizas , Retroalimentación , Simbiosis , Plantas/microbiología , Suelo
4.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35201608

RESUMEN

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Asunto(s)
Carbono , Clima Tropical , Biomasa , Temperatura , Madera
5.
Natl Sci Rev ; 8(5): nwaa244, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34691640

RESUMEN

It is known that biotic interactions are the key to species coexistence and maintenance of species diversity. Traditional studies focus overwhelmingly on pairwise interactions between organisms, ignoring complex higher-order interactions (HOIs). In this study, we present a novel method of calculating individual-level HOIs for trees, and use this method to test the importance of size- and distance-dependent individual-level HOIs to tree performance in a 25-ha temperate forest dynamic plot. We found that full HOI-inclusive models improved our ability to model and predict the survival and growth of trees, providing empirical evidence that HOIs strongly influence tree performance in this temperate forest. Specifically, assessed HOIs mitigate the competitive direct effects of neighbours on survival and growth of focal trees. Our study lays a foundation for future investigations of the prevalence and relative importance of HOIs in global forests and their impact on species diversity.

6.
Nat Commun ; 12(1): 3137, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035260

RESUMEN

Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.


Asunto(s)
Biodiversidad , Bosques , Micorrizas/fisiología , Árboles/fisiología , Interacciones Microbiota-Huesped/fisiología , Dispersión de las Plantas , Microbiología del Suelo , Árboles/microbiología
7.
Surv Geophys ; 40(4): 959-977, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31395993

RESUMEN

Current and planned space missions will produce aboveground biomass density data products at varying spatial resolution. Calibration and validation of these data products is critically dependent on the existence of field estimates of aboveground biomass and coincident remote sensing data from airborne or terrestrial lidar. There are few places that meet these requirements, and they are mostly in the northern hemisphere and temperate zone. Here we summarize the potential for low-altitude drones to produce new observations in support of mission science. We describe technical requirements for producing high-quality measurements from autonomous platforms and highlight differences among commercially available laser scanners and drone aircraft. We then describe a case study using a heavy-lift autonomous helicopter in a temperate mountain forest in the southern Czech Republic in support of calibration and validation activities for the NASA Global Ecosystem Dynamics Investigation. Low-altitude flight using drones enables the collection of ultra-high-density point clouds using wider laser scan angles than have been possible from traditional airborne platforms. These measurements can be precise and accurate and can achieve measurement densities of thousands of points · m-2. Analysis of surface elevation measurements on a heterogeneous target observed 51 days apart indicates that the realized range accuracy is 2.4 cm. The single-date precision is 2.1-4.5 cm. These estimates are net of all processing artifacts and geolocation errors under fully autonomous flight. The 3D model produced by these data can clearly resolve branch and stem structure that is comparable to terrestrial laser scans and can be acquired rapidly over large landscapes at a fraction of the cost of traditional airborne laser scanning.

8.
Ecol Lett ; 22(2): 245-255, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30548766

RESUMEN

Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised relationships amongst climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.


Asunto(s)
Biodiversidad , Árboles , Clima
9.
Science ; 360(6391)2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29798853

RESUMEN

Hülsmann and Hartig suggest that ecological mechanisms other than specialized natural enemies or intraspecific competition contribute to our estimates of conspecific negative density dependence (CNDD). To address their concern, we show that our results are not the result of a methodological artifact and present a null-model analysis that demonstrates that our original findings-(i) stronger CNDD at tropical relative to temperate latitudes and (ii) a latitudinal shift in the relationship between CNDD and species abundance-persist even after controlling for other processes that might influence spatial relationships between adults and recruits.


Asunto(s)
Biodiversidad , Árboles , Densidad de Población , Plantones
10.
Science ; 360(6391)2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29798855

RESUMEN

Chisholm and Fung claim that our method of estimating conspecific negative density dependence (CNDD) in recruitment is systematically biased, and present an alternative method that shows no latitudinal pattern in CNDD. We demonstrate that their approach produces strongly biased estimates of CNDD, explaining why they do not detect a latitudinal pattern. We also address their methodological concerns using an alternative distance-weighted approach, which supports our original findings of a latitudinal gradient in CNDD and a latitudinal shift in the relationship between CNDD and species abundance.


Asunto(s)
Biodiversidad , Árboles , Ecosistema , Plantones
11.
Science ; 356(6345): 1389-1392, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28663501

RESUMEN

Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.


Asunto(s)
Biodiversidad , Árboles/clasificación , Antibiosis , Ecosistema , Bosques , Geografía , Modelos Biológicos , Árboles/fisiología , Clima Tropical
12.
PLoS One ; 12(5): e0176871, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28472167

RESUMEN

Terrestrial laser scanning is a powerful technology for capturing the three-dimensional structure of forests with a high level of detail and accuracy. Over the last decade, many algorithms have been developed to extract various tree parameters from terrestrial laser scanning data. Here we present 3D Forest, an open-source non-platform-specific software application with an easy-to-use graphical user interface with the compilation of algorithms focused on the forest environment and extraction of tree parameters. The current version (0.42) extracts important parameters of forest structure from the terrestrial laser scanning data, such as stem positions (X, Y, Z), tree heights, diameters at breast height (DBH), as well as more advanced parameters such as tree planar projections, stem profiles or detailed crown parameters including convex and concave crown surface and volume. Moreover, 3D Forest provides quantitative measures of between-crown interactions and their real arrangement in 3D space. 3D Forest also includes an original algorithm of automatic tree segmentation and crown segmentation. Comparison with field data measurements showed no significant difference in measuring DBH or tree height using 3D Forest, although for DBH only the Randomized Hough Transform algorithm proved to be sufficiently resistant to noise and provided results comparable to traditional field measurements.


Asunto(s)
Bosques , Imagenología Tridimensional , Algoritmos , Automatización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...