Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38352355

RESUMEN

The primary auditory cortex (ACtx) is critically involved in the association of sensory information with specific behavioral outcomes. Such sensory-guided behaviors are necessarily brain-wide endeavors, requiring a plethora of distinct brain areas, including those that are involved in aspects of decision making, motor planning, motor initiation, and reward prediction. ACtx comprises a number of distinct excitatory cell-types that allow for the brain-wide propagation of behaviorally-relevant sensory information. Exactly how ACtx involvement changes as a function of learning, as well as the functional role of distinct excitatory cell-types is unclear. Here, we addressed these questions by designing a two-choice auditory task in which water-restricted, head-fixed mice were trained to categorize the temporal rate of a sinusoidal amplitude modulated (sAM) noise burst and used transient cell-type specific optogenetics to probe ACtx necessity across the duration of learning. Our data demonstrate that ACtx is necessary for the ability to categorize the rate of sAM noise, and this necessity grows across learning. ACtx silencing substantially altered the behavioral strategies used to solve the task by introducing a fluctuating choice bias and increasing dependence on prior decisions. Furthermore, ACtx silencing did not impact the animal's motor report, suggesting that ACtx is necessary for the conversion of sensation to action. Targeted inhibition of extratelencephalic projections on just 20% of trials had a minimal effect on task performance, but significantly degraded learning. Taken together, our data suggest that distinct cortical cell-types synergistically control auditory-guided behavior and that extratelencephalic neurons play a critical role in learning and plasticity.

2.
Neuroscience ; 457: 235-258, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33460731

RESUMEN

Nearly sixty years ago Fredrich Timm developed a histochemical technique that revealed a rich reserve of free zinc in distinct regions of the brain. Subsequent electron microscopy studies in Timm- stained brain tissue found that this "labile" pool of cellular zinc was highly concentrated at synaptic boutons, hinting a possible role for the metal in synaptic transmission. Although evidence for activity-dependent synaptic release of zinc would not be reported for another twenty years, these initial findings spurred decades of research into zinc's role in neuronal function and revealed a diverse array of signaling cascades triggered or regulated by the metal. Here, we delve into our current understanding of the many roles zinc plays in the brain, from influencing neurotransmission and sensory processing, to activating both pro-survival and pro-death neuronal signaling pathways. Moreover, we detail the many mechanisms that tightly regulate cellular zinc levels, including metal binding proteins and a large array of zinc transporters.


Asunto(s)
Encéfalo , Zinc , Neuronas , Terminales Presinápticos , Transmisión Sináptica
3.
Sci Adv ; 6(27)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32937457

RESUMEN

The NMDA receptor (NMDAR) is inhibited by synaptically released zinc. This inhibition is thought to be the result of zinc diffusion across the synaptic cleft and subsequent binding to the extracellular domain of the NMDAR. However, this model fails to incorporate the observed association of the highly zinc-sensitive NMDAR subunit GluN2A with the postsynaptic zinc transporter ZnT1, which moves intracellular zinc to the extracellular space. Here, we report that disruption of ZnT1-GluN2A association by a cell-permeant peptide strongly reduced NMDAR inhibition by synaptic zinc in mouse dorsal cochlear nucleus synapses. Moreover, synaptic zinc inhibition of NMDARs required postsynaptic intracellular zinc, suggesting that cytoplasmic zinc is transported by ZnT1 to the extracellular space in close proximity to the NMDAR. These results challenge a decades-old dogma on how zinc inhibits synaptic NMDARs and demonstrate that presynaptic release and a postsynaptic transporter organize zinc into distinct microdomains to modulate NMDAR neurotransmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA