Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7506, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980413

RESUMEN

Apical extracellular matrices (aECMs) are complex extracellular compartments that form important interfaces between animals and their environment. In the adult C. elegans cuticle, layers are connected by regularly spaced columnar structures known as struts. Defects in struts result in swelling of the fluid-filled medial cuticle layer ('blistering', Bli). Here we show that three cuticle collagens BLI-1, BLI-2, and BLI-6, play key roles in struts. BLI-1 and BLI-2 are essential for strut formation whereas activating mutations in BLI-6 disrupt strut formation. BLI-1, BLI-2, and BLI-6 precisely colocalize to arrays of puncta in the adult cuticle, corresponding to struts, initially deposited in diffuse stripes adjacent to cuticle furrows. They eventually exhibit tube-like morphology, with the basal ends of BLI-containing struts contact regularly spaced holes in the cuticle. Genetic interaction studies indicate that BLI strut patterning involves interactions with other cuticle components. Our results reveal strut formation as a tractable example of precise aECM patterning at the nanoscale.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Colágeno/genética , Matriz Extracelular/genética
2.
Clin Transl Sci ; 14(3): 1133-1146, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33620150

RESUMEN

We applied a set of in silico and in vitro assays, compliant with the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm, to assess the risk of chloroquine (CLQ) or hydroxychloroquine (OH-CLQ)-mediated QT prolongation and Torsades de Pointes (TdP), alone and combined with erythromycin (ERT) and azithromycin (AZI), drugs repurposed during the first wave of coronavirus disease 2019 (COVID-19). Each drug or drug combination was tested in patch clamp assays on seven cardiac ion channels, in in silico models of human ventricular electrophysiology (Virtual Assay) using control (healthy) or high-risk cell populations, and in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. In each assay, concentration-response curves encompassing and exceeding therapeutic free plasma levels were generated. Both CLQ and OH-CLQ showed blocking activity against some potassium, sodium, and calcium currents. CLQ and OH-CLQ inhibited IKr (half-maximal inhibitory concentration [IC50 ]: 1 µM and 3-7 µM, respectively) and IK1 currents (IC50 : 5 and 44 µM, respectively). When combining OH-CLQ with AZI, no synergistic effects were observed. The two macrolides had no or very weak effects on the ion currents (IC50  > 300-1000 µM). Using Virtual Assay, both antimalarials affected several TdP indicators, CLQ being more potent than OH-CLQ. Effects were more pronounced in the high-risk cell population. In hiPSC-derived cardiomyocytes, all drugs showed early after-depolarizations, except AZI. Combining CLQ or OH-CLQ with a macrolide did not aggravate their effects. In conclusion, our integrated nonclinical CiPA dataset confirmed that, at therapeutic plasma concentrations relevant for malaria or off-label use in COVID-19, CLQ and OH-CLQ use is associated with a proarrhythmia risk, which is higher in populations carrying predisposing factors but not worsened with macrolide combination.


Asunto(s)
Antimaláricos/efectos adversos , Arritmias Cardíacas/inducido químicamente , Tratamiento Farmacológico de COVID-19 , Cloroquina/efectos adversos , Hidroxicloroquina/efectos adversos , Uso Fuera de lo Indicado , SARS-CoV-2 , Animales , Células CHO , Cricetulus , Relación Dosis-Respuesta a Droga , Electrocardiografía/efectos de los fármacos , Humanos , Canales Iónicos/efectos de los fármacos
3.
Telemed J E Health ; 27(7): 755-762, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33090088

RESUMEN

Background: The events of the coronavirus disease 2019 (COVID-19) pandemic forced the world to adopt telemedicine frameworks to comply with isolation and stay-at-home regulations. Telemedicine, in various forms, has been used by patients and medical professionals for quite some time, especially telepsychiatry. To examine the efficacy and role of telesimulation as a method to educate health sciences students via telepresence robots. The study recruited students from the above health science disciplines. All participants were trained to administer a contextual interview to a standardized patient (SP) for mental health concerns. Methods: The completion of the contextual interview observation form adult (CIOF-A), National Aeronautics and Space Administration Task Load Index, self-efficacy in patient centeredness questionnaire (SEPCQ), and communication skills attitude scale with or without a telepresence robot. All participants completed baseline metrics and were trained to conduct a contextual interview to an SP. Researchers block-randomized the participants to either the telepresence robot group (TP) or in-person (IP) group. Results: The study recruited n = 43 participants to the IP group (n = 21) or TP group (n = 22). Mean participant demographics of age were 25.3 (±1.9) years in the IP group and 24.3 (±2.1) years for the TP group. Mean and standard deviation scores with effect sizes in CIOF-A scores IP: 0.05 (±1.91) and TP: -0.45 (±1.71), Cohen's d = 0.28; SEPCQ-Patient Domain scores IP: 0.42 (±4.69) and TP: 0.50 (±7.18), Cohen's d = 0.01; change in SEPCQ-Sharing Domain scores IP: 0.53 (±5.10) and TP: 0.91 (±9.98), Cohen's d = 0.05. These effect sizes will inform future studies and appropriate sample sizes. Conclusion: These data indicate that health sciences students utilizing a telepresence robot in an SP scenario to perform a behavioral health screening felt as comfortable and competent as those health sciences students performing the same behavioral health screening in person. ClinicalTrials.gov Identifier: NCT03661372.


Asunto(s)
COVID-19 , Robótica , Telemedicina , Adulto , Escolaridad , Humanos , SARS-CoV-2 , Adulto Joven
4.
Bioorg Med Chem Lett ; 34: 127759, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33383152

RESUMEN

In seeking novel and potent small molecule hematopoietic prostaglandin D2 synthase (H-PGDS) inhibitors as potential therapies for PGD2-mediated diseases and conditions, we explored a series comprising multiple aryl/heteroaryl rings attached in a linear arrangement. Each compound incorporates an amide or imidazole "linker" between the pyrimidine or pyridine "core" ring and the "tail" ring system. We synthesized and screened twenty analogs by fluorescence polarization binding assay, thermal shift assay, glutathione S-transferase inhibition assay, and a cell-based assay measuring suppression of LPS-induced PGD2 stimulation. Amide analogs show ten-fold greater shift in the thermal shift assay in the presence of glutathione (GSH) versus the same assay run in the absence of GSH. The imidazole analogs did not produce a significant change in thermal shift between the two assay conditions, suggesting a possible stabilization effect of the amide linker in the synthase-GSH-inhibitor complex. Imidazole analog 23, (KMN-010034) demonstrates superior potency across the in vitro assays and good in vitro metabolic stability in both human and guinea pig liver microsomes.


Asunto(s)
Amidas/farmacología , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Lipocalinas/antagonistas & inhibidores , Amidas/síntesis química , Amidas/química , Animales , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Cobayas , Humanos , Imidazoles/síntesis química , Imidazoles/química , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Relación Estructura-Actividad
6.
J Pharmacol Toxicol Methods ; 105: 106890, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32574700

RESUMEN

INTRODUCTION: In response to the ongoing shift of the regulatory cardiac safety paradigm, a recent White Paper proposed general principles for developing and implementing proarrhythmia risk prediction models. These principles included development strategies to validate models, and implementation strategies to ensure a model developed by one lab can be used by other labs in a consistent manner in the presence of lab-to-lab experimental variability. While the development strategies were illustrated through the validation of the model under the Comprehensive In vitro Proarrhythmia Assay (CiPA), the implementation strategies have not been adopted yet. METHODS: The proposed implementation strategies were applied to the CiPA model by performing a sensitivity analysis to identify a subset of calibration drugs that were most critical in determining the classification thresholds for proarrhythmia risk prediction. RESULTS: The selected calibration drugs were able to recapitulate classification thresholds close to those calculated from the full list of CiPA drugs. Using an illustrative dataset it was shown that a new lab could use these calibration drugs to establish its own classification thresholds (lab-specific calibration), and verify that the model prediction accuracy in the new lab is comparable to that in the original lab where the model was developed (lab-specific validation). DISCUSSION: This work used the CiPA model as an example to illustrate how to adopt the proposed model implementation strategies to select calibration drugs and perform lab-specific calibration and lab-specific validation. Generic in nature, these strategies could be generally applied to different proarrhythmia risk prediction models using various experimental systems under the new paradigm.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Bioensayo/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Calibración , Evaluación Preclínica de Medicamentos/métodos , Electrocardiografía/métodos , Humanos
8.
Toxicol Appl Pharmacol ; 394: 114961, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209365

RESUMEN

INTRODUCTION: hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. METHODS: A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. RESULTS: A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. DISCUSSION: This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.


Asunto(s)
Canal de Potasio ERG1/antagonistas & inhibidores , Medición de Riesgo/métodos , Torsades de Pointes/inducido químicamente , Teorema de Bayes , Simulación por Computador , Humanos , Modelos Biológicos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Seguridad , Torsades de Pointes/fisiopatología
9.
Sci Rep ; 10(1): 5627, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221320

RESUMEN

Automated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC50 values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug's cardiac safety margin. We determined variability of APC data from multiple sites that measured blocking potency of 12 blinded drugs (with different levels of proarrhythmic risk) against four human cardiac currents (hERG [IKr], hCav1.2 [L-Type ICa], peak hNav1.5, [Peak INa], late hNav1.5 [Late INa]) with recommended protocols (to minimize variance) using five APC platforms across 17 sites. IC50 variability (25/75 percentiles) differed for drugs and currents (e.g., 10.4-fold for dofetilide block of hERG current and 4-fold for mexiletine block of hNav1.5 current). Within-platform variance predominated for 4 of 12 hERG blocking drugs and 4 of 6 hNav1.5 blocking drugs. hERG and hNav1.5 block. Bland-Altman plots depicted varying agreement across APC platforms. A follow-up survey suggested multiple sources of experimental variability that could be further minimized by stricter adherence to standard protocols. Adoption of best practices would ensure less variable APC datasets and improved safety margins and proarrhythmic risk assessments.

10.
J Med Chem ; 62(9): 4731-4741, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30964292

RESUMEN

A series of small-molecule full agonists of the prostaglandin E2 type 4 (EP4) receptor have been generated and evaluated for binding affinity and cellular potency. KMN-80 and its gem-difluoro analog KMN-159 possess high selectivity relative to other prostanoid receptors. Difluoro substitution is positioned alpha to the lactam ring carbonyl and results in KMN-159's fivefold increase in potency versus KMN-80. The two analogs exhibit electronic and conformational variations, including altered nitrogen hybridization and lactam ring puckering, that may drive the observed difluoro-associated increased potency within this four-compound series.


Asunto(s)
Alprostadil/análogos & derivados , Alprostadil/farmacología , Ácidos Heptanoicos/farmacología , Lactamas/farmacología , Pirrolidinas/farmacología , Subtipo EP4 de Receptores de Prostaglandina E/agonistas , Alprostadil/metabolismo , Animales , Sitios de Unión , Células CHO , Células CACO-2 , Cricetulus , Humanos , Lactamas/síntesis química , Lactamas/metabolismo , Modelos Químicos , Simulación del Acoplamiento Molecular , Estructura Molecular , Teoría Cuántica , Subtipo EP3 de Receptores de Prostaglandina E/química , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/química , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo
11.
Clin Pharmacol Ther ; 105(2): 466-475, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30151907

RESUMEN

The International Council on Harmonization (ICH) S7B and E14 regulatory guidelines are sensitive but not specific for predicting which drugs are pro-arrhythmic. In response, the Comprehensive In Vitro Proarrhythmia Assay (CiPA) was proposed that integrates multi-ion channel pharmacology data in vitro into a human cardiomyocyte model in silico for proarrhythmia risk assessment. Previously, we reported the model optimization and proarrhythmia metric selection based on CiPA training drugs. In this study, we report the application of the prespecified model and metric to independent CiPA validation drugs. Over two validation datasets, the CiPA model performance meets all pre-specified measures for ranking and classifying validation drugs, and outperforms alternatives, despite some in vitro data differences between the two datasets due to different experimental conditions and quality control procedures. This suggests that the current CiPA model/metric may be fit for regulatory use, and standardization of experimental protocols and quality control criteria could increase the model prediction accuracy even further.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/epidemiología , Simulación por Computador , Bases de Datos Factuales , Evaluación Preclínica de Medicamentos/métodos , Canal de Potasio ERG1/efectos de los fármacos , Humanos , Canales Iónicos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Reproducibilidad de los Resultados , Medición de Riesgo , Sensibilidad y Especificidad
12.
J Biomol Screen ; 21(1): 1-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26170255

RESUMEN

For the past decade, cardiac safety screening to evaluate the propensity of drugs to produce QT interval prolongation and Torsades de Pointes (TdP) arrhythmia has been conducted according to ICH S7B and ICH E14 guidelines. Central to the existing approach are hERG channel assays and in vivo QT measurements. Although effective, the present paradigm carries a risk of unnecessary compound attrition and high cost, especially when considering costly thorough QT (TQT) studies conducted later in drug development. The C: omprehensive I: n Vitro P: roarrhythmia A: ssay (CiPA) initiative is a public-private collaboration with the aim of updating the existing cardiac safety testing paradigm to better evaluate arrhythmia risk and remove the need for TQT studies. It is hoped that CiPA will produce a standardized ion channel assay approach, incorporating defined tests against major cardiac ion channels, the results of which then inform evaluation of proarrhythmic actions in silico, using human ventricular action potential reconstructions. Results are then to be confirmed using human (stem cell-derived) cardiomyocytes. This perspective article reviews the rationale, progress of, and challenges for the CiPA initiative, if this new paradigm is to replace existing practice and, in time, lead to improved and widely accepted cardiac safety testing guidelines.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Corazón/efectos de los fármacos , Animales , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Torsades de Pointes/inducido químicamente , Torsades de Pointes/diagnóstico
13.
Sci Rep ; 5: 17623, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26616666

RESUMEN

Vanoxerine has been in clinical trials for Parkinsonism, depression and cocaine addiction but lacked efficacy. Although a potent blocker of hERG, it produced no serious adverse events. We attributed the unexpected result to offsetting Multiple Ion Channel Effects (MICE). Vanoxerine's effects were strongly frequency-dependent and we repositioned it for treatment of atrial fibrillation and flutter. Vanoxerine terminated AF/AFL in an animal model and a dose-ranging clinical trial. Reversion to normal rhythm was associated with QT prolongation yet absent proarrhythmia markers for Torsade de Pointes (TdP). To understand the QT/TdP discordance, we used quantitative profiling and compared vanoxerine with dofetilide, a selective hERG-blocking torsadogen used for intractable AF, verapamil, a non-torsadogenic MICE comparator and bepridil, a torsadogenic MICE comparator. At clinically relevant concentrations, verapamil blocked hCav1.2 and hERG, as did vanoxerine and bepridil both of which also blocked hNav1.5. In acute experiments and simulations, dofetilide produced early after depolarizations (EADs) and arrhythmias, whereas verapamil, vanoxerine and bepridil produced no proarrhythmia markers. Of the MICE drugs only bepridil inhibited hERG trafficking following overnight exposure. The results are consistent with the emphasis on MICE of the CiPA assay. Additionally we propose that trafficking inhibition of hERG be added to CiPA.


Asunto(s)
Corazón/efectos de los fármacos , Canales Iónicos/metabolismo , Miocardio/metabolismo , Piperazinas/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Bepridil/farmacología , Células CHO , Simulación por Computador , Cricetulus , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Potenciales de la Membrana/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Fenetilaminas/farmacología , Sulfonamidas/farmacología , Verapamilo/farmacología
14.
Biomed Res Int ; 2015: 320280, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26301245

RESUMEN

A three-dimensional computational fluid dynamics- (CFD-) model based on a differential pressure laminar flow bioreactor prototype was developed to further examine performance under changing culture conditions. Cell growth inside scaffolds was simulated by decreasing intrinsic permeability values and led to pressure build-up in the upper culture chamber. Pressure release by an integrated bypass system allowed continuation of culture. The specific shape of the bioreactor culture vessel supported a homogenous flow profile and mass flux at the scaffold level at various scaffold permeabilities. Experimental data showed an increase in oxygen concentration measured inside a collagen scaffold seeded with human mesenchymal stem cells when cultured in the perfusion bioreactor after 24 h compared to static culture in a Petri dish (dynamic: 11% O2 versus static: 3% O2). Computational fluid simulation can support design of bioreactor systems for tissue engineering application.


Asunto(s)
Técnicas de Cultivo de Célula , Hidrodinámica , Células Madre Mesenquimatosas , Oxígeno/metabolismo , Reactores Biológicos , Proliferación Celular , Simulación por Computador , Humanos , Osteoblastos/citología , Porosidad , Presión , Andamios del Tejido
15.
Sci Rep ; 3: 2100, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23812503

RESUMEN

Drug-induced block of the cardiac hERG (human Ether-à-go-go-Related Gene) potassium channel delays cardiac repolarization and increases the risk of Torsade de Pointes (TdP), a potentially lethal arrhythmia. A positive hERG assay has been embraced by regulators as a non-clinical predictor of TdP despite a discordance of about 30%. To test whether assaying concomitant block of multiple ion channels (Multiple Ion Channel Effects or MICE) improves predictivity we measured the concentration-responses of hERG, Nav1.5 and Cav1.2 currents for 32 torsadogenic and 23 non-torsadogenic drugs from multiple classes. We used automated gigaseal patch clamp instruments to provide higher throughput along with accuracy and reproducibility. Logistic regression models using the MICE assay showed a significant reduction in false positives (Type 1 errors) and false negatives (Type 2 errors) when compared to the hERG assay. The best MICE model only required a comparison of the blocking potencies between hERG and Cav1.2.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/fisiología , Modelos Teóricos , Torsades de Pointes/fisiopatología , Canal de Potasio ERG1 , Humanos , Técnicas de Placa-Clamp , Valor Predictivo de las Pruebas , Torsades de Pointes/diagnóstico
16.
Toxicol Appl Pharmacol ; 272(1): 245-55, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23707608

RESUMEN

Tyrosine kinase inhibitors (TKi) have greatly improved the treatment and prognosis of multiple cancer types. However, unexpected cardiotoxicity has arisen in a subset of patients treated with these agents that was not wholly predicted by pre-clinical testing, which centers around animal toxicity studies and inhibition of the human Ether-à-go-go-Related Gene (hERG) channel. Therefore, we sought to determine whether a multi-parameter test panel assessing the effect of drug treatment on cellular, molecular, and electrophysiological endpoints could accurately predict cardiotoxicity. We examined how 4 FDA-approved TKi agents impacted cell viability, apoptosis, reactive oxygen species (ROS) generation, metabolic status, impedance, and ion channel function in human cardiomyocytes. The 3 drugs clinically associated with severe cardiac adverse events (crizotinib, sunitinib, nilotinib) all proved to be cardiotoxic in our in vitro tests while the relatively cardiac-safe drug erlotinib showed only minor changes in cardiac cell health. Crizotinib, an ALK/MET inhibitor, led to increased ROS production, caspase activation, cholesterol accumulation, disruption in cardiac cell beat rate, and blockage of ion channels. The multi-targeted TKi sunitinib showed decreased cardiomyocyte viability, AMPK inhibition, increased lipid accumulation, disrupted beat pattern, and hERG block. Nilotinib, a second generation Bcr-Abl inhibitor, led to increased ROS generation, caspase activation, hERG block, and an arrhythmic beat pattern. Thus, each drug showed a unique toxicity profile that may reflect the multiple mechanisms leading to cardiotoxicity. This study demonstrates that a multi-parameter approach can provide a robust characterization of drug-induced cardiomyocyte damage that can be leveraged to improve drug safety during early phase development.


Asunto(s)
Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colesterol/metabolismo , Crizotinib , Canal de Potasio ERG1 , Activación Enzimática/efectos de los fármacos , Clorhidrato de Erlotinib , Canales de Potasio Éter-A-Go-Go/biosíntesis , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Indoles/toxicidad , Canales Iónicos/efectos de los fármacos , Lípidos/biosíntesis , Miocitos Cardíacos/ultraestructura , Técnicas de Placa-Clamp , Células Madre Pluripotentes/efectos de los fármacos , Pirazoles/toxicidad , Piridinas/toxicidad , Pirimidinas/toxicidad , Pirroles/toxicidad , Quinazolinas/toxicidad , ARN/biosíntesis , ARN/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Sunitinib
17.
Bioorg Med Chem Lett ; 22(10): 3392-7, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22542194

RESUMEN

A series of 2-(1H-pyrazol-1-yl)pyridines are described as inhibitors of ALK5 (TGFß receptor I kinase). Modeling compounds in the ALK5 kinase domain enabled some optimization of potency via substitutions on the pyrazole core. One of these compounds PF-03671148 gave a dose dependent reduction in TGFß induced fibrotic gene expression in human fibroblasts. A similar reduction in fibrotic gene expression was observed when PF-03671148 was applied topically in a rat wound repair model. Thus these compounds have potential utility for the prevention of dermal scarring.


Asunto(s)
Cicatriz/prevención & control , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Piridinas/química , Piridinas/farmacología , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Piel/efectos de los fármacos , Animales , Modelos Moleculares , Fosforilación , Ratas , Receptor Tipo I de Factor de Crecimiento Transformador beta
18.
Genetics ; 190(4): 1365-77, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22298703

RESUMEN

Recent studies in Caenorhabditis elegans have revealed specific neural maintenance mechanisms that protect soma and neurites against mispositioning due to displacement stresses, such as muscle contraction. We report that C. elegans dystroglycan (DG) DGN-1 functions to maintain the position of lumbar neurons during late embryonic and larval development. In the absence of DGN-1 the cell bodies of multiple lumbar neuron classes are frequently displaced anterior of their normal positions. Early but not later embryonic panneural expression of DGN-1 rescues positional maintenance, suggesting that dystroglycan is required for establishment of a critical maintenance pathway that persists throughout later developmental stages. Lumbar neural maintenance requires only a membrane-tethered N-terminal domain of DGN-1 and may involve a novel extracellular partner for dystroglycan. A genetic screen for similar lumbar maintenance mutants revealed a role for the nesprin/SYNE family protein ANC-1 as well as for the extracellular protein DIG-1, previously implicated in lumbar neuron maintenance. The involvement of ANC-1 reveals a previously unknown role for nucleus-cytoskeleton interactions in neural maintenance. Genetic analysis indicates that lumbar neuron position is maintained in late embryos by parallel DGN-1/DIG-1 and ANC-1-dependent pathways, and in larvae by separate DGN-1 and ANC-1 pathways. The effect of muscle paralysis on late embryonic- or larval-stage maintenance defects in mutants indicates that lumbar neurons are subject to both muscle contraction-dependent and contraction-independent displacement stresses, and that different maintenance pathways may protect against specific types of displacement stress.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Núcleo Celular/metabolismo , Distroglicanos/metabolismo , Neuronas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Cromosomas/genética , Cromosomas/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Distroglicanos/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Epistasis Genética , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Contracción Muscular , Músculos/citología , Músculos/embriología , Músculos/metabolismo , Parálisis/genética , Parálisis/patología , Fenotipo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Eliminación de Secuencia , Estrés Fisiológico , Transgenes
19.
Dev Neurobiol ; 72(12): 1498-515, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22275151

RESUMEN

Neural development in metazoans is characterized by the establishment of initial process tracts by pioneer axons and the subsequent extension of follower axons along these pioneer processes. Mechanisms governing the fidelity of follower extension along pioneered routes are largely unknown. In C. elegans, formation of the right angle-shaped lumbar commissure connecting the lumbar and preanal ganglia is an example of pioneer/follower dynamics. We find that the dystroglycan ortholog DGN-1 mediates the fidelity of follower lumbar commissure axon extension along the pioneer axon route. In dgn-1 mutants, the axon of the pioneer PVQ neuron faithfully establishes the lumbar commissure, but axons of follower lumbar neurons, such as PVC, frequently bypass the lumbar commissure and extend along an oblique trajectory directly toward the preanal ganglion. In contrast, disruption of the UNC-6/netrin guidance pathway principally perturbs PVQ ventral guidance to pioneer the lumbar commissure. Loss of DGN-1 in unc-6 mutants has a quantitatively similar effect on follower axon guidance regardless of PVQ axon route, indicating that DGN-1 does not mediate follower/pioneer adhesion. Instead, DGN-1 appears to block premature responsiveness of follower axons to a preanal ganglion-directed guidance cue, which mediates ventral-to-anterior reorientation of lumbar commissure axons. Deletion analysis shows that only the most N-terminal DGN-1 domain is required for these activities. These studies suggest that dystroglycan modulation of growth cone responsiveness to conflicting guidance cues is important for restricting follower axon extension to the tracts laid down by pioneers.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Distroglicanos/metabolismo , Neurogénesis/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/citología , Movimiento Celular/fisiología
20.
Ecotoxicology ; 20(8): 2019-29, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21779820

RESUMEN

Acute silver toxicity studies were conducted with and without food for four common freshwater test species: Daphnia magna, Ceriodaphnia dubia, Pimephales promelas (fathead minnow-FHM), and Oncorhynchus mykiss (rainbow trout-RBT) in order to generate acute-to-chronic ratios (ACR). The studies were conducted similarly (i.e., static-renewal or flow-through) to chronic/early-life stage studies that were previously performed in this laboratory. The acute toxicity (EC/LC50 values) of silver without food ranged from 0.57 µg dissolved Ag/l for C.dubia to 9.15 µg dissolved Ag/l for RBT. The presence of food resulted in an increase in EC/LC50 values from 1.25× for RBT to 22.4× for C. dubia. Invertebrate food type was also shown to effect acute silver toxicity. Food did not affect EC/LC50s or ACRs as greatly in fish studies as in invertebrate studies. ACRs for both invertebrate species were <1.0 when using acute studies without food but were 1.22 and 1.33 when using acute studies with food. ACRs for FHMs ranged from 4.06 to 7.19, while RBT ACRs ranged from 28.6 to 35.8 depending on whether food was present in acute studies. The data generated from this research program should be useful in re-determining a final ACR for silver in freshwater as well as in risk assessments.


Asunto(s)
Peces , Nitrato de Plata/toxicidad , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Cladóceros/efectos de los fármacos , Cyprinidae , Daphnia/efectos de los fármacos , Oncorhynchus mykiss , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...