Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39253507

RESUMEN

The macrodomain contained in the SARS-CoV-2 non-structural protein 3 (NSP3) is required for viral pathogenesis and lethality. Inhibitors that block the macrodomain could be a new therapeutic strategy for viral suppression. We previously performed a large-scale X-ray crystallography-based fragment screen and discovered a sub-micromolar inhibitor by fragment linking. However, this carboxylic acid-containing lead had poor membrane permeability and other liabilities that made optimization difficult. Here, we developed a shape-based virtual screening pipeline - FrankenROCS - to identify new macrodomain inhibitors using fragment X-ray crystal structures. We used FrankenROCS to exhaustively screen the Enamine high-throughput screening (HTS) collection of 2.1 million compounds and selected 39 compounds for testing, with the most potent compound having an IC50 value equal to 130 µM. We then paired FrankenROCS with an active learning algorithm (Thompson sampling) to efficiently search the Enamine REAL database of 22 billion molecules, testing 32 compounds with the most potent having an IC50 equal to 220 µM. Further optimization led to analogs with IC50 values better than 10 µM, with X-ray crystal structures revealing diverse binding modes despite conserved chemical features. These analogs represent a new lead series with improved membrane permeability that is poised for optimization. In addition, the collection of 137 X-ray crystal structures with associated binding data will serve as a resource for the development of structure-based drug discovery methods. FrankenROCS may be a scalable method for fragment linking to exploit ever-growing synthesis-on-demand libraries.

2.
J Chem Inf Model ; 64(4): 1158-1171, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38316125

RESUMEN

Over the last five years, virtual screening of ultralarge synthesis on-demand libraries has emerged as a powerful tool for hit identification in drug discovery programs. As these libraries have grown to tens of billions of molecules, we have reached a point where it is no longer cost-effective to screen every molecule virtually. To address these challenges, several groups have developed heuristic search methods to rapidly identify the best molecules on a virtual screen. This article describes the application of Thompson sampling (TS), an active learning approach that streamlines the virtual screening of large combinatorial libraries by performing a probabilistic search in the reagent space, thereby never requiring the full enumeration of the library. TS is a general technique that can be applied to various virtual screening modalities, including 2D and 3D similarity search, docking, and application of machine-learning models. In an illustrative example, we show that TS can identify more than half of the top 100 molecules from a docking-based virtual screen of 335 million molecules by evaluating 1% of the data set.


Asunto(s)
Bases de Datos de Compuestos Químicos , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos
3.
J Med Chem ; 65(10): 7073-7087, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35511951

RESUMEN

One application area of computational methods in drug discovery is the automated design of small molecules. Despite the large number of publications describing methods and their application in both retrospective and prospective studies, there is a lack of agreement on terminology and key attributes to distinguish these various systems. We introduce Automated Chemical Design (ACD) Levels to clearly define the level of autonomy along the axes of ideation and decision making. To fully illustrate this framework, we provide literature exemplars and place some notable methods and applications into the levels. The ACD framework provides a common language for describing automated small molecule design systems and enables medicinal chemists to better understand and evaluate such systems.


Asunto(s)
Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Estudios Prospectivos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA