Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(34): E7092-E7100, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28784805

RESUMEN

TRPM6 and TRPM7 are members of the melastatin-related transient receptor potential (TRPM) subfamily of ion channels. Deletion of either gene in mice is embryonically lethal. TRPM6/7 are the only known examples of single polypeptides containing both an ion channel pore and a serine/threonine kinase (chanzyme). Here we show that the C-terminal kinase domain of TRPM6 is cleaved from the channel domain in a cell type-specific fashion and is active. Cleavage requires that the channel conductance is functional. The cleaved kinase translocates to the nucleus, where it is strictly localized and phosphorylates specific histone serine and threonine (S/T) residues. TRPM6-cleaved kinases (M6CKs) bind subunits of the protein arginine methyltransferase 5 (PRMT5) molecular complex that make important epigenetic modifications by methylating histone arginine residues. Histone phosphorylation by M6CK results in a dramatic decrease in methylation of arginines adjacent to M6CK-phosphorylated amino acids. Knockout of TRPM6 or inactivation of its kinase results in global changes in histone S/T phosphorylation and changes the transcription of hundreds of genes. We hypothesize that M6CK associates with the PRMT5 molecular complex in the nucleus, directing M6CK to a specific genomic location and providing site-specific histone phosphorylation. M6CK histone phosphorylation, in turn, regulates transcription by attenuating the effect of local arginine methylation.


Asunto(s)
Arginina/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Canales Catiónicos TRPM/metabolismo , Arginina/química , Arginina/genética , Línea Celular , Histonas/química , Histonas/genética , Humanos , Metilación , Fosforilación , Dominios Proteicos , Serina/genética , Serina/metabolismo , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/genética , Treonina/genética , Treonina/metabolismo
2.
Cell ; 157(5): 1061-72, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855944

RESUMEN

TRPM7 is a ubiquitous ion channel and kinase, a unique "chanzyme," required for proper early embryonic development. It conducts Zn(2+), Mg(2+), and Ca(2+) as well as monovalent cations and contains a functional serine/threonine kinase at its carboxyl terminus. Here, we show that in normal tissues and cell lines, the kinase is proteolytically cleaved from the channel domain in a cell-type-specific manner. These TRPM7 cleaved kinase fragments (M7CKs) translocate to the nucleus and bind multiple components of chromatin-remodeling complexes, including Polycomb group proteins. In the nucleus, the kinase phosphorylates specific serines/threonines of histones. M7CK-dependent phosphorylation of H3Ser10 at promoters of TRPM7-dependent genes correlates with their activity. We also demonstrate that cytosolic free [Zn(2+)] is TRPM7 dependent and regulates M7CK binding to transcription factors containing zinc-finger domains. These findings suggest that TRPM7-mediated modulation of intracellular Zn(2+) concentration couples ion-channel signaling to epigenetic chromatin covalent modifications that affect gene expression patterns. PAPERCLIP:


Asunto(s)
Canales Catiónicos TRPM/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Citosol/metabolismo , Expresión Génica , Histonas/metabolismo , Humanos , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas , Zinc/metabolismo , Dedos de Zinc
3.
Dev Cell ; 22(6): 1149-62, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22698280

RESUMEN

Transient receptor potential melastatin-like 7 (TRPM7) is a channel protein that also contains a regulatory serine-threonine kinase domain. Here, we find that Trpm7-/- T cells are deficient in Fas-receptor-induced apoptosis and that TRPM7 channel activity participates in the apoptotic process and is regulated by caspase-dependent cleavage. This function of TRPM7 is dependent on its function as a channel, but not as a kinase. TRPM7 is cleaved by caspases at D1510, disassociating the carboxy-terminal kinase domain from the pore without disrupting the phosphotransferase activity of the released kinase but substantially increasing TRPM7 ion channel activity. Furthermore, we show that TRPM7 regulates endocytic compartmentalization of the Fas receptor after receptor stimulation, an important process for apoptotic signaling through Fas receptors. These findings raise the possibility that other members of the TRP channel superfamily are also regulated by caspase-mediated cleavage, with wide-ranging implications for cell death and differentiation.


Asunto(s)
Apoptosis , Canales Catiónicos TRPM/metabolismo , Receptor fas/metabolismo , Animales , Caspasas/metabolismo , Línea Celular , Endocitosis , Humanos , Canales Iónicos/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Proc Natl Acad Sci U S A ; 108(48): 19234-9, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22084111

RESUMEN

Specialized proteins in the plasma membrane, endoplasmic reticulum (ER), and mitochondria tightly regulate intracellular calcium. A unique mechanism called store-operated calcium entry is activated when ER calcium is depleted, serving to restore intra-ER calcium levels. An ER calcium sensor, stromal interaction molecule 1 (STIM1), translocates within the ER membrane upon store depletion to the juxtaplasma membrane domain, where it interacts with intracellular domains of a highly calcium-selective plasma membrane ion channel, Orai1. STIM1 gates Orai1, allowing calcium to enter the cytoplasm, where it repletes the ER store via calcium-ATPases pumps. Here, we performed affinity purification of Orai1 from Jurkat cells to identify partner of STIM1 (POST), a 10-transmembrane-spanning segment protein of unknown function. The protein is located in the plasma membrane and ER. POST-Orai1 binding is store depletion-independent. On store depletion, the protein binds STIM1 and moves within the ER to localize near the cell membrane. This protein, TMEM20 (POST), does not affect store-operated calcium entry but does reduce plasma membrane Ca(2+) pump activity. Store depletion promotes STIM1-POST complex binding to smooth ER and plasma membrane Ca(2+) ATPases (SERCAs and PMCAs, respectively), Na/K-ATPase, as well as to the nuclear transporters, importins-ß and exportins.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Transporte Biológico/fisiología , Canales de Calcio/metabolismo , Línea Celular , Electrofisiología , Humanos , Microscopía Fluorescente , Proteína ORAI1 , Proteínas Transportadoras de Solutos , Molécula de Interacción Estromal 1
5.
Nat Commun ; 2: 153, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21224844

RESUMEN

Calcium signalling is critical for successful fertilization. In spermatozoa, capacitation, hyperactivation of motility and the acrosome reaction are all mediated by increases in intracellular Ca(2+). Cation channels of sperm proteins (CATSPERS1-4) form an alkalinization-activated Ca(2+)-selective channel required for the hyperactivated motility of spermatozoa and male fertility. Each of the CatSper1-4 genes encodes a subunit of a tetramer surrounding a Ca(2+)-selective pore, in analogy with other six-transmembrane ion channel α subunits. In addition to the pore-forming proteins, the sperm Ca(2+) channel contains auxiliary subunits, CATSPERß and CATSPERγ. Here, we identify the Tmem146 gene product as a novel subunit, CATSPERδ, required for CATSPER channel function. We find that mice lacking the sperm tail-specific CATSPERδ are infertile and their spermatozoa lack both Ca(2+) current and hyperactivated motility. We show that CATSPERδ is an essential element of the CATSPER channel complex and propose that CATSPERδ is required for proper CATSPER channel assembly and/or transport.

6.
Proc Natl Acad Sci U S A ; 105(24): 8304-8, 2008 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-18539771

RESUMEN

TRPM7, of the transient receptor potential (TRP) family, is both an ion channel and a kinase. Previously, we showed that TRPM7 is located in the membranes of acetylcholine (ACh)-secreting synaptic vesicles of sympathetic neurons, forms a molecular complex with proteins of the vesicular fusion machinery, and is critical for stimulated neurotransmitter release. Here, we targeted pHluorin to small synaptic-like vesicles (SSLV) in PC12 cells and demonstrate that it can serve as a single-vesicle plasma membrane fusion reporter. In PC12 cells, as in sympathetic neurons, TRPM7 is located in ACh-secreting SSLVs. TRPM7 knockdown by siRNA, or abolishing channel activity by expression of a dominant negative TRPM7 pore mutant, decreased the frequency of spontaneous and voltage-stimulated SSLV fusion events without affecting large dense core vesicle secretion. We conclude that the conductance of TRPM7 across the vesicle membrane is important in SSLV fusion.


Asunto(s)
Acetilcolina/metabolismo , Membrana Celular/fisiología , Fusión de Membrana , Vesículas Sinápticas/fisiología , Canales Catiónicos TRPM/metabolismo , Animales , Transporte Biológico , Membrana Celular/enzimología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células PC12 , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , ARN Interferente Pequeño/genética , Ratas , Vesículas Sinápticas/enzimología , Canales Catiónicos TRPM/genética , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
7.
Proc Natl Acad Sci U S A ; 104(4): 1219-23, 2007 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-17227845

RESUMEN

Mammalian spermatozoa become motile at ejaculation, but before they can fertilize the egg, they must acquire more thrust to penetrate the cumulus and zona pellucida. The forceful asymmetric motion of hyperactivated spermatozoa requires Ca2+ entry into the sperm tail by an alkalinization-activated voltage-sensitive Ca2+-selective current (ICatSper). Hyperactivation requires CatSper1 and CatSper2 putative ion channel genes, but the function of two other related genes (CatSper3 and CatSper4) is not known. Here we show that targeted disruption of murine CatSper3 or CatSper4 also abrogated ICatSper, sperm cell hyperactivated motility and male fertility but did not affect spermatogenesis or initial motility. Direct protein interactions among CatSpers, the sperm specificity of these proteins, and loss of ICatSper in each of the four CatSper-/- mice indicate that CatSpers are highly specialized flagellar proteins.


Asunto(s)
Canales de Calcio/fisiología , Fertilidad/fisiología , Isoformas de Proteínas/fisiología , Motilidad Espermática/fisiología , Animales , Masculino , Ratones , Datos de Secuencia Molecular
8.
Neuron ; 52(3): 485-96, 2006 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17088214

RESUMEN

A longstanding hypothesis is that ion channels are present in the membranes of synaptic vesicles and might affect neurotransmitter release. Here we demonstrate that TRPM7, a member of the transient receptor potential (TRP) ion channel family, resides in the membrane of synaptic vesicles of sympathetic neurons, forms molecular complexes with the synaptic vesicle proteins synapsin I and synaptotagmin I, and directly interacts with synaptic vesicular snapin. In sympathetic neurons, changes in TRPM7 levels and channel activity alter acetylcholine release, as measured by EPSP amplitudes and decay times in postsynaptic neurons. TRPM7 affects EPSP quantal size, an intrinsic property of synaptic vesicle release. Targeted peptide interference of TRPM7's interaction with snapin affects the amplitudes and kinetics of postsynaptic EPSPs. Thus, vesicular TRPM7 channel activity is critical to neurotransmitter release in sympathetic neurons.


Asunto(s)
Acetilcolina/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Animales Recién Nacidos , Western Blotting/métodos , Células Cultivadas , Cricetinae , Cricetulus , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Inmunoelectrónica/métodos , Mutagénesis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Técnicas de Placa-Clamp/métodos , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Ganglio Cervical Superior/citología , Sinapsis/clasificación , Vesículas Sinápticas/ultraestructura , Canales Catiónicos TRPM/química , Transfección/métodos , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacología
9.
Neuron ; 43(4): 563-74, 2004 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-15312654

RESUMEN

The synapse contains densely localized and interacting proteins that enable it to adapt to changing inputs. We describe a Ca2+-sensitive protein complex involved in the regulation of AMPA receptor synaptic plasticity. The complex is comprised of MUPPI, a multi-PDZ domain-containing protein; SynGAP, a synaptic GTPase-activating protein; and the Ca2+/calmodulin-dependent kinase CaMKII. In synapses of hippocampal neurons, SynGAP and CaMKII are brought together by direct physical interaction with the PDZ domains of MUPP1, and in this complex, SynGAP is phosphorylated. Ca2+CaM binding to CaMKII dissociates it from the MUPP1 complex, and Ca2+ entering via the NMDAR drives the dephosphorylation of SynGAP. Specific peptide-induced SynGAP dissociation from the MUPP1-CaMKII complex results in SynGAP dephosphorylation accompanied by P38 MAPK inactivation, potentiation of synaptic AMPA responses, and an increase in the number of AMPAR-containing clusters in hippocampal neuron synapses. siRNA-mediated SynGAP knockdown confirmed these results. These data implicate SynGAP in NMDAR- and CaMKII-dependent regulation of AMPAR trafficking.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Proteínas Portadoras/fisiología , Proteínas Activadoras de GTPasa/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Secuencia de Aminoácidos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Portadoras/genética , Línea Celular , Proteínas Activadoras de GTPasa/genética , Hipocampo/enzimología , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/fisiología , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/enzimología , Sinapsis/genética , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos , Proteínas Activadoras de ras GTPasa
10.
Neuron ; 40(4): 775-84, 2003 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-14622581

RESUMEN

The NMDA subtype of glutamate receptors (NMDAR) at excitatory neuronal synapses plays a key role in synaptic plasticity. The extracellular signal-regulated kinase (ERK1,2 or ERK) pathway is an essential component of NMDAR signal transduction controlling the neuroplasticity underlying memory processes, neuronal development, and refinement of synaptic connections. Here we show that NR2B, but not NR2A or NR1 subunits of the NMDAR, interacts in vivo and in vitro with RasGRF1, a Ca(2+)/calmodulin-dependent Ras-guanine-nucleotide-releasing factor. Specific disruption of this interaction in living neurons abrogates NMDAR-dependent ERK activation. Thus, RasGRF1 serves as NMDAR-dependent regulator of the ERK kinase pathway. The specific association of RasGRF1 with the NR2B subunit and study of ERK activation in neurons with varied content of NR2B suggests that NR2B-containing channels are the dominant activators of the NMDA-dependent ERK pathway.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/genética , Sinapsis/enzimología , ras-GRF1/metabolismo , Animales , Animales Recién Nacidos , Sitios de Unión/genética , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , Feto , Hipocampo/metabolismo , Humanos , Mutación/genética , N-Metilaspartato/farmacología , Plasticidad Neuronal/genética , Técnicas de Cultivo de Órganos , Péptidos/farmacología , Estructura Terciaria de Proteína/genética , Ratas , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , Transmisión Sináptica/genética , ras-GRF1/antagonistas & inhibidores , ras-GRF1/genética
11.
J Biol Chem ; 278(40): 39014-9, 2003 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-12857742

RESUMEN

Mammalian short TRP channels (TRPCs) are putative receptor- and store-operated cation channels that play a fundamental role in the regulation of cellular Ca2+ homeostasis. Assembly of the seven TRPC homologs (TRPC1-7) into homo- and heteromers can create a large variety of different channels. However, the compositions as well as the functional properties of native TRPC complexes are largely undefined. We performed a systematic biochemical study of TRPC interactions in mammalian brain and identified previously unrecognized channel heteromers composed of TRPC1, TRPC4, or TRPC5 and the diacylglycerol-activated TRPC3 or TRPC6 subunits. The novel TRPC heteromers were found exclusively in embryonic brain. In heterologous systems, we demonstrated that assembly of these novel heteromers required the combination of TRPC1 plus TRPC4 or TRPC5 subunits along with diacylglycerol-sensitive subunits in the channel complexes. Functional interaction of the TRPC subunits was verified using a dominant negative TRPC5 mutant (TRPC5DN). Co-expression of TRPC5DN suppressed currents through TRPC5- and TRPC4-containing complexes; TRPC3-associated currents were unaffected by TRPC5DN unless TRPC1 was also co-expressed. This complex assembly mechanism increases the diversity of TRPC channels in mammalian brain and may generate novel heteromers that have specific roles in the developing brain.


Asunto(s)
Encéfalo/embriología , Canales de Calcio/química , Proteínas de Transporte de Catión , Canales Iónicos/química , Animales , Western Blotting , Encéfalo/metabolismo , Calcio/metabolismo , Carbacol/farmacología , Cationes , Línea Celular , Membrana Celular/metabolismo , Clonación Molecular , Diglicéridos/química , Dimerización , Electrofisiología , Genes Dominantes , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Mutación , Pruebas de Precipitina , Unión Proteica , Isoformas de Proteínas , ARN Mensajero/metabolismo , Ratas , Canales Catiónicos TRPC , Canal Catiónico TRPC6 , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...