Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Biosci Rep ; 44(1)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38131452

RESUMEN

Upon SARS-CoV-2 infection, patients with severe forms of COVID-19 often suffer from a dysregulated immune response and hyperinflammation. Aberrant expression of cytokines and chemokines is associated with strong activation of the immunoregulatory transcription factor NF-κB, which can be directly induced by the SARS-CoV-2 protein NSP14. Here, we use NSP14 mutants and generated cells with host factor knockouts (KOs) in the NF-κB signaling pathways to characterize the molecular mechanism of NSP14-induced NF-κB activation. We demonstrate that full-length NSP14 requires methyltransferase (MTase) activity to drive NF-κB induction. NSP14 WT, but not an MTase-defective mutant, is poorly expressed and inherent post-translational instability is mediated by proteasomal degradation. Binding of SARS-CoV-2 NSP10 or addition of the co-factor S-adenosylmethionine (SAM) stabilizes NSP14 and augments its potential to activate NF-κB. Using CRISPR/Cas9-engineered KO cells, we demonstrate that NSP14 stimulation of canonical NF-κB activation relies on NF-κB factor p65/RELA downstream of the NEMO/IKK complex, while c-Rel or non-canonical RelB are not required to induce NF-κB transcriptional activity. However, NSP14 overexpression is unable to induce canonical IκB kinase ß (IKKß)/NF-κB signaling and in co-immunoprecipitation assays we do not detect stable associations between NSP14 and NEMO or p65, suggesting that NSP14 activates NF-κB indirectly through its methyltransferase activity. Taken together, our data provide a framework how NSP14 can augment basal NF-κB activation, which may enhance cytokine expression in SARS-CoV-2 infected cells.


Asunto(s)
COVID-19 , FN-kappa B , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , Transducción de Señal , Metiltransferasas/genética , Metiltransferasas/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(48): e2309205120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37988467

RESUMEN

Constitutive activation of the MALT1 paracaspase in conventional T cells of Malt1TBM/TBM (TRAF6 Binding Mutant = TBM) mice causes fatal inflammation and autoimmunity, but the involved targets and underlying molecular mechanisms are unknown. We genetically rendered a single MALT1 substrate, the RNA-binding protein (RBP) Roquin-1, insensitive to MALT1 cleavage. These Rc3h1Mins/Mins mice showed normal immune homeostasis. Combining Rc3h1Mins/Mins alleles with those encoding for constitutively active MALT1 (TBM) prevented spontaneous T cell activation and restored viability of Malt1TBM/TBM mice. Mechanistically, we show how antigen/MHC recognition is translated by MALT1 into Roquin cleavage and derepression of Roquin targets. Increasing T cell receptor (TCR) signals inactivated Roquin more effectively, and only high TCR strength enabled derepression of high-affinity targets to promote Th17 differentiation. Induction of experimental autoimmune encephalomyelitis (EAE) revealed increased cleavage of Roquin-1 in disease-associated Th17 compared to Th1 cells in the CNS. T cells from Rc3h1Mins/Mins mice did not efficiently induce the high-affinity Roquin-1 target IκBNS in response to TCR stimulation, showed reduced Th17 differentiation, and Rc3h1Mins/Mins mice were protected from EAE. These data demonstrate how TCR signaling and MALT1 activation utilize graded cleavage of Roquin to differentially regulate target mRNAs that control T cell activation and differentiation as well as the development of autoimmunity.


Asunto(s)
Autoinmunidad , Encefalomielitis Autoinmune Experimental , Ratones , Animales , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Inflamación/metabolismo , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/genética , Receptores de Antígenos de Linfocitos T/genética , Ubiquitina-Proteína Ligasas
3.
J Chem Phys ; 159(7)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37602805

RESUMEN

The transition to renewable energy sources comes along with the search for new energy storage solutions. Molecular solar thermal systems directly harvest and store solar energy in a chemical manner. By a suitable molecular design, a higher overall efficiency can be achieved. In this study, we investigate the surface chemistry of oxa-norbornadiene/quadricyclane derivatives on a Pt(111) surface. Specifically, we focus on the energy storage and release properties of molecules that are substituted with ester moieties of different sizes. For our model catalytic approach, synchrotron radiation-based x-ray photoelectron spectroscopy measurements were conducted in ultra-high vacuum (UHV) and correlated with the catalytic behavior in the liquid phase monitored by photochemical infrared reflection absorption spectroscopy. The differences in their spectral appearance enabled us to unambiguously differentiate the energy-lean and energy-rich isomers and decomposition products. Next to qualitative information on the adsorption motifs, temperature-programmed experiments allowed for the observation of thermally induced reactions and the deduction of the related reaction pathways. We analyzed the selectivity of the cycloreversion reaction from the energy-rich quadricyclane derivative to its energy-lean norbornadiene isomer and competing processes, such as desorption and decomposition. For the 2,3-bis(methylester)-substitution, the cycloreversion reaction was found to occur between 310 and 340 K, while the thermal stability limit of the compounds was determined to be 380 K. The larger 2,3-bis(benzylester) derivatives have a lower apparent adsorption energy and a decomposition onset already at 135 K. In the liquid phase (in acetonitrile), we determined the rate constants for the cycloreversion reaction on Pt(111) to k = 5.3 × 10-4 s-1 for the 2,3-bis(methylester)-substitution and k = 6.3 × 10-4 s-1 for the 2,3-bis(benzylester) derivative. The selectivities were of >99% and 98% for the two molecules, respectively. The difference in the catalytic behavior of Pt(111) for both derivatives is less pronounced in the liquid phase than in UHV, which we attribute to the passivation of the Pt(111) surface by carbonaceous species under ambient conditions.

4.
Blood ; 142(23): 1985-2001, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37623434

RESUMEN

Constitutive mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) activity drives survival of malignant lymphomas addicted to chronic B-cell receptor signaling, oncogenic CARD11, or the API2-MALT1 (also BIRC3::MALT1) fusion oncoprotein. Although MALT1 scaffolding induces NF-κB-dependent survival signaling, MALT1 protease function is thought to augment NF-κB activation by cleaving signaling mediators and transcriptional regulators in B-cell lymphomas. However, the pathological role of MALT1 protease function in lymphomagenesis is not well understood. Here, we show that TRAF6 controls MALT1-dependent activation of NF-κB transcriptional responses but is dispensable for MALT1 protease activation driven by oncogenic CARD11. To uncouple enzymatic and nonenzymatic functions of MALT1, we analyzed TRAF6-dependent and -independent as well as MALT1 protease-dependent gene expression profiles downstream of oncogenic CARD11 and API2-MALT1. The data suggest that by cleaving and inactivating the RNA binding proteins Regnase-1 and Roquin-1/2, MALT1 protease induces posttranscriptional upregulation of many genes including NFKBIZ/IκBζ, NFKBID/IκBNS, and ZC3H12A/Regnase-1 in activated B-cell-like diffuse large B-cell lymphoma (ABC DLBCL). We demonstrate that oncogene-driven MALT1 activity in ABC DLBCL cells regulates NFKBIZ and NFKBID induction on an mRNA level via releasing a brake imposed by Regnase-1 and Roquin-1/2. Furthermore, MALT1 protease drives posttranscriptional gene induction in the context of the API2-MALT1 fusion created by the recurrent t(11;18)(q21;q21) translocation in MALT lymphoma. Thus, MALT1 paracaspase acts as a bifurcation point for enhancing transcriptional and posttranscriptional gene expression in malignant lymphomas. Moreover, the identification of MALT1 protease-selective target genes provides specific biomarkers for the clinical evaluation of MALT1 inhibitors.


Asunto(s)
Linfoma de Células B de la Zona Marginal , Linfoma de Células B Grandes Difuso , Humanos , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Oncogenes , Linfoma de Células B de la Zona Marginal/genética , Linfoma de Células B de la Zona Marginal/metabolismo , Linfoma de Células B Grandes Difuso/patología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo
5.
Cancer Treat Rev ; 117: 102568, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37126937

RESUMEN

The paracaspase MALT1 has emerged as a key regulator of immune signaling, which also promotes tumor development by both cancer cell-intrinsic and -extrinsic mechanisms. As an integral subunit of the CARD11-BCL10-MALT1 (CBM) signaling complex, MALT1 has an intriguing dual function in lymphocytes. MALT1 acts as a scaffolding protein to drive activation of NF-κB transcription factors and as a protease to modulate signaling and immune activation by cleavage of distinct substrates. Aberrant MALT1 activity is critical for NF-κB-dependent survival and proliferation of malignant cancer cells, which is fostered by paracaspase-catalyzed inactivation of negative regulators of the canonical NF-κB pathway like A20, CYLD and RelB. Specifically, B cell receptor-addicted lymphomas rely strongly on this cancer cell-intrinsic MALT1 protease function, but also survival, proliferation and metastasis of certain solid cancers is sensitive to MALT1 inhibition. Beyond this, MALT1 protease exercises a cancer cell-extrinsic role by maintaining the immune-suppressive function of regulatory T (Treg) cells in the tumor microenvironment (TME). MALT1 inhibition is able to convert immune-suppressive to pro-inflammatory Treg cells in the TME of solid cancers, thereby eliciting a robust anti-tumor immunity that can augment the effects of checkpoint inhibitors. Therefore, the cancer cell-intrinsic and -extrinsic tumor promoting MALT1 protease functions offer unique therapeutic opportunities, which has motivated the development of potent and selective MALT1 inhibitors currently under pre-clinical and clinical evaluation.


Asunto(s)
FN-kappa B , Neoplasias , Humanos , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , FN-kappa B/metabolismo , Caspasas/metabolismo , Transducción de Señal , Neoplasias/tratamiento farmacológico
6.
J Immunother Precis Oncol ; 6(2): 61-73, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37214210

RESUMEN

Introduction: Regulatory T cells (Tregs) play a critical role in the maintenance of immune homeostasis but also protect tumors from immune-mediated growth control or rejection and pose a significant barrier to effective immunotherapy. Inhibition of MALT1 paracaspase activity can selectively reprogram immune-suppressive Tregs in the tumor microenvironment to adopt a proinflammatory fragile state, which offers an opportunity to impede tumor growth and enhance the efficacy of immune checkpoint therapy (ICT). Methods: We performed preclinical studies with the orally available allosteric MALT1 inhibitor (S)-mepazine as a single-agent and in combination with anti-programmed cell death protein 1 (PD-1) ICT to investigate its pharmacokinetic properties and antitumor effects in several murine tumor models as well as patient-derived organotypic tumor spheroids (PDOTS). Results: (S)-mepazine demonstrated significant antitumor effects and was synergistic with anti-PD-1 therapy in vivo and ex vivo but did not affect circulating Treg frequencies in healthy rats at effective doses. Pharmacokinetic profiling revealed favorable drug accumulation in tumors to concentrations that effectively blocked MALT1 activity, potentially explaining preferential effects on tumor-infiltrating over systemic Tregs. Conclusions: The MALT1 inhibitor (S)-mepazine showed single-agent anticancer activity and presents a promising opportunity for combination with PD-1 pathway-targeted ICT. Activity in syngeneic tumor models and human PDOTS was likely mediated by induction of tumor-associated Treg fragility. This translational study supports ongoing clinical investigations (ClinicalTrials.gov Identifier: NCT04859777) of MPT-0118, (S)-mepazine succinate, in patients with advanced or metastatic treatment-refractory solid tumors.

7.
Front Immunol ; 14: 1111398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761777

RESUMEN

MALT1 is a core component of the CARD11-BCL10-MALT1 (CBM) signalosome, in which it acts as a scaffold and a protease to bridge T cell receptor (TCR) ligation to immune activation. As a scaffold, MALT1 binds to TRAF6, and T cell-specific TRAF6 ablation or destruction of MALT1-TRAF6 interaction provokes activation of conventional T (Tconv) effector cells. In contrast, MALT1 protease activity controls the development and suppressive function of regulatory T (Treg) cells in a T cell-intrinsic manner. Thus, complete loss of TRAF6 or selective inactivation of MALT1 catalytic function in mice skews the immune system towards autoimmune inflammation, but distinct mechanisms are responsible for these immune disorders. Here we demonstrate that TRAF6 deletion or MALT1 paracaspase inactivation are highly interdependent in causing the distinct immune pathologies. We crossed mice with T cell-specific TRAF6 ablation (Traf6-ΔT) and mice with a mutation rendering the MALT1 paracaspase dead in T cells (Malt1 PD-T) to yield Traf6-ΔT;Malt1 PD-T double mutant mice. These mice reveal that the autoimmune inflammation caused by TRAF6-ablation relies strictly on the function of the MALT1 protease to drive the activation of Tconv cells. Vice versa, despite the complete loss of Treg cells in Traf6-ΔT;Malt1 PD-T double mutant mice, inactivation of the MALT1 protease is unable to cause autoinflammation, because the Tconv effector cells are not activated in the absence of TRAF6. Consequentially, combined MALT1 paracaspase inactivation and TRAF6 deficiency in T cells mirrors the immunodeficiency seen upon T cell-specific MALT1 ablation.


Asunto(s)
Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Animales , Ratones , Endopeptidasas/metabolismo , Homeostasis , Inflamación , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Péptido Hidrolasas/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo
8.
Nat Immunol ; 24(2): 295-308, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36604548

RESUMEN

It has been shown that innate immune responses can adopt adaptive properties such as memory. Whether T cells utilize innate immune signaling pathways to diversify their repertoire of effector functions is unknown. Gasdermin E (GSDME) is a membrane pore-forming molecule that has been shown to execute pyroptotic cell death and thus to serve as a potential cancer checkpoint. In the present study, we show that human T cells express GSDME and, surprisingly, that this expression is associated with durable viability and repurposed for the release of the alarmin interleukin (IL)-1α. This property was restricted to a subset of human helper type 17 T cells with specificity for Candida albicans and regulated by a T cell-intrinsic NLRP3 inflammasome, and its engagement of a proteolytic cascade of successive caspase-8, caspase-3 and GSDME cleavage after T cell receptor stimulation and calcium-licensed calpain maturation of the pro-IL-1α form. Our results indicate that GSDME pore formation in T cells is a mechanism of unconventional cytokine release. This finding diversifies our understanding of the functional repertoire and mechanistic equipment of T cells and has implications for antifungal immunity.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Células Th17 , Humanos , Caspasa 1/metabolismo , Gasderminas , Inmunidad Innata , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis
9.
Nat Biotechnol ; 41(1): 140-149, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217029

RESUMEN

Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Proteoma/genética , Síndrome Post Agudo de COVID-19 , Replicación Viral/genética , Ubiquitina Tiolesterasa/farmacología
10.
ChemSusChem ; 15(24): e202201483, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36213958

RESUMEN

Molecular solar thermal (MOST) systems, such as the norbornadiene/quadricyclane (NBD/QC) couple, combine solar energy conversion, storage, and release in a simple one-photon one-molecule process. Triggering the energy release electrochemically enables high control of the process, high selectivity, and reversibility. In this work, the influence of the molecular design of the MOST couple on the electrochemically triggered back-conversion reaction was addressed for the first time. The MOST systems phenyl-ethyl ester-NBD/QC (NBD1/QC1) and p-methoxyphenyl-ethyl ester-NBD/QC (NBD2/QC2) were investigated by in-situ photoelectrochemical infrared spectroscopy, voltammetry, and density functional theory modelling. For QC1, partial decomposition (40 %) was observed upon back-conversion and along with a voltammetric peak at 0.6 Vfc , which was assigned primarily to decomposition. The back-conversion of QC2, however, occurred without detectable side products, and the corresponding peak at 0.45 Vfc was weaker by a factor of 10. It was concluded that the electrochemical stability of a NBD/QC couple is easy tunable by simple structural changes. Furthermore, the charge input and, therefore, the current for the electrochemically triggered energy release is very low, which ensures a high overall efficiency of the MOST system.

11.
J Immunother Cancer ; 10(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36270731

RESUMEN

An innovative strategy for cancer therapy is to combine the inhibition of cancer cell-intrinsic oncogenic signaling with cancer cell-extrinsic immunological activation of the tumor microenvironment (TME). In general, such approaches will focus on two or more distinct molecular targets in the malignant cells and in cells of the surrounding TME. In contrast, the protease Mucosa-associated lymphoid tissue protein 1 (MALT1) represents a candidate to enable such a dual approach by engaging only a single target. Originally identified and now in clinical trials as a lymphoma drug target based on its role in the survival and proliferation of malignant lymphomas addicted to chronic B cell receptor signaling, MALT1 proteolytic activity has recently gained additional attention through reports describing its tumor-promoting roles in several types of non-hematological solid cancer, such as breast cancer and glioblastoma. Besides cancer cells, regulatory T (Treg) cells in the TME are particularly dependent on MALT1 to sustain their immune-suppressive functions, and MALT1 inhibition can selectively reprogram tumor-infiltrating Treg cells into Foxp3-expressing proinflammatory antitumor effector cells. Thereby, MALT1 inhibition induces local inflammation in the TME and synergizes with anti-PD-1 checkpoint blockade to induce antitumor immunity and facilitate tumor control or rejection. This new concept of boosting tumor immunotherapy in solid cancer by MALT1 precision targeting in the TME has now entered clinical evaluation. The dual effects of MALT1 inhibitors on cancer cells and immune cells therefore offer a unique opportunity for combining precision oncology and immunotherapy to simultaneously impair cancer cell growth and neutralize immunosuppression in the TME. Further, MALT1 targeting may provide a proof of concept that modulation of Treg cell function in the TME represents a feasible strategy to augment the efficacy of cancer immunotherapy. Here, we review the role of MALT1 protease in physiological and oncogenic signaling, summarize the landscape of tumor indications for which MALT1 is emerging as a therapeutic target, and consider strategies to increase the chances for safe and successful use of MALT1 inhibitors in cancer therapy.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Péptido Hidrolasas , Medicina de Precisión , Inmunoterapia , Factores de Transcripción Forkhead , Receptores de Antígenos de Linfocitos B , Microambiente Tumoral , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo
12.
Sci Adv ; 8(31): eabp9153, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35921415

RESUMEN

Alternative splicing plays key roles for cell type-specific regulation of protein function. It is controlled by cis-regulatory RNA elements that are recognized by RNA binding proteins (RBPs). The MALT1 paracaspase is a key factor of signaling pathways that mediate innate and adaptive immune responses. Alternative splicing of MALT1 is critical for controlling optimal T cell activation. We demonstrate that MALT1 splicing depends on RNA structural elements that sequester the splice sites of the alternatively spliced exon7. The RBPs hnRNP U and hnRNP L bind competitively to stem-loop RNA structures that involve the 5' and 3' splice sites flanking exon7. While hnRNP U stabilizes RNA stem-loop conformations that maintain exon7 skipping, hnRNP L disrupts these RNA elements to facilitate recruitment of the essential splicing factor U2AF2, thereby promoting exon7 inclusion. Our data represent a paradigm for the control of splice site selection by differential RBP binding and modulation of pre-mRNA structure.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo L , Precursores del ARN , Empalme Alternativo , Sitios de Unión , Exones , Ribonucleoproteína Heterogénea-Nuclear Grupo L/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Precursores del ARN/genética , Sitios de Empalme de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
13.
Bio Protoc ; 12(10): e4423, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35813027

RESUMEN

Although CRISPR-Cas9 genome editing can be performed directly in single-cell mouse zygotes, the targeting efficiency for more complex modifications such as the insertion of two loxP sites, multiple mutations in cis, or the precise insertion or deletion of longer DNA sequences often remains low (Cohen, 2016). Thus, targeting and validation of correct genomic modification in murine embryonic stem cells (ESCs) with subsequent injection into early-stage mouse embryos may still be preferable, allowing for large-scale screening in vitro before transfer of thoroughly characterized and genetically defined ESC clones into the germline. This procedure can result in a reduction of animal numbers with cost effectiveness and compliance with the 3R principle of animal welfare regulations. Here, we demonstrate that after transfection of homology templates and PX458 CRISPR-Cas9 plasmids, EGFP-positive ESCs can be sorted with a flow cytometer for the enrichment of CRISPR-Cas9-expressing cells. Cell sorting obviates antibiotic selection and therefore allows for more gentle culture conditions and faster outgrowth of ESC clones, which are then screened by qPCR for correct genomic modifications. qPCR screening is more convenient and less time-consuming compared to analyzing PCR samples on agarose gels. Positive ESC clones are validated by PCR analysis and sequencing and can serve for injection into early-stage mouse embryos for the generation of chimeric mice with germline transmission. Therefore, we describe here a simple and straightforward protocol for CRISPR-Cas9-directed gene targeting in ESCs. Graphical abstract.

14.
Sci Signal ; 15(723): eabk3083, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35230873

RESUMEN

CARD11 acts as a gatekeeper for adaptive immune responses after T cell or B cell antigen receptor (TCR/BCR) ligation on lymphocytes. PKCθ/ß-catalyzed phosphorylation of CARD11 promotes the assembly of the CARD11-BCL10-MALT1 (CBM) complex and lymphocyte activation. Here, we demonstrated that PKCθ/ß-dependent CARD11 phosphorylation also suppressed CARD11 functions in T or B cells. Through mass spectrometry-based proteomics analysis, we identified multiple constitutive and inducible CARD11 phosphorylation sites in T cells. We demonstrated that a single TCR- or BCR-inducible phosphorylation on Ser893 in the carboxyl terminus of CARD11 prevented the activation of the transcription factor NF-κB, the kinase JNK, and the protease MALT1. Moreover, CARD11 Ser893 phosphorylation sensitized BCR-addicted lymphoma cells to toxicity induced by Bruton's tyrosine kinase (BTK) inhibitors. Phosphorylation of Ser893 in CARD11 by PKCθ controlled the strength of CARD11 scaffolding by impairing the formation of the CBM complex. Thus, PKCθ simultaneously catalyzes both stimulatory and inhibitory CARD11 phosphorylation events, which shape the strength of CARD11 signaling in lymphocytes.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Serina , Proteína 10 de la LLC-Linfoma de Células B/genética , Proteína 10 de la LLC-Linfoma de Células B/metabolismo , Linfocitos B/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación
15.
Cell Mol Life Sci ; 79(2): 112, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35099607

RESUMEN

T cell activation initiates protective adaptive immunity, but counterbalancing mechanisms are critical to prevent overshooting responses and to maintain immune homeostasis. The CARD11-BCL10-MALT1 (CBM) complex bridges T cell receptor engagement to NF-κB signaling and MALT1 protease activation. Here, we show that ABIN-1 is modulating the suppressive function of A20 in T cells. Using quantitative mass spectrometry, we identified ABIN-1 as an interactor of the CBM signalosome in activated T cells. A20 and ABIN-1 counteract inducible activation of human primary CD4 and Jurkat T cells. While A20 overexpression is able to silence CBM complex-triggered NF-κB and MALT1 protease activation independent of ABIN-1, the negative regulatory function of ABIN-1 depends on A20. The suppressive function of A20 in T cells relies on ubiquitin binding through the C-terminal zinc finger (ZnF)4/7 motifs, but does not involve the deubiquitinating activity of the OTU domain. Our mechanistic studies reveal that the A20/ABIN-1 module is recruited to the CBM complex via A20 ZnF4/7 and that proteasomal degradation of A20 and ABIN-1 releases the CBM complex from the negative impact of both regulators. Ubiquitin binding to A20 ZnF4/7 promotes destructive K48-polyubiquitination to itself and to ABIN-1. Further, after prolonged T cell stimulation, ABIN-1 antagonizes MALT1-catalyzed cleavage of re-synthesized A20 and thereby diminishes sustained CBM complex signaling. Taken together, interdependent post-translational mechanisms are tightly controlling expression and activity of the A20/ABIN-1 silencing module and the cooperative action of both negative regulators is critical to balance CBM complex signaling and T cell activation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Linfocitos T/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/fisiología , Proteína 10 de la LLC-Linfoma de Células B/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Células Cultivadas , Guanilato Ciclasa/metabolismo , Células HEK293 , Humanos , Células Jurkat , Activación de Linfocitos/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Unión Proteica , Interferencia de ARN/inmunología , Transducción de Señal/fisiología , Linfocitos T/inmunología
16.
J Clin Immunol ; 42(3): 634-652, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35079916

RESUMEN

PURPOSE: MALT1 deficiency is a combined immune deficiency characterized by recurrent infections, eczema, chronic diarrhea, and failure to thrive. Clinical and immunological characterizations of the disease have not been previously reported in large cohorts. We sought to determine the clinical, immunological, genetic features, and the natural history of MALT-1 deficiency. METHODS: The clinical findings and treatment outcomes were evaluated in nine new MALT1-deficient patients. Peripheral lymphocyte subset analyses, cytokine secretion, and proliferation assays were performed. We also analyzed ten previously reported patients to comprehensively evaluate genotype/phenotype correlation. RESULTS: The mean age of patients and disease onset were 33 ± 17 and 1.6 ± 0.7 months, respectively. The main clinical findings of the disease were recurrent infections (100%), skin involvement (100%), failure to thrive (100%), oral lesions (67%), chronic diarrhea (56%), and autoimmunity (44%). Eosinophilia and high IgE were observed in six (67%) and two (22%) patients, respectively. The majority of patients had normal T and NK cells, while eight (89%) exhibited reduced B cells. Immunoglobulin replacement and antibiotics prophylaxis were mostly ineffective in reducing the frequency of infections and other complications. One patient received hematopoietic stem cell transplantation (HSCT) and five patients died as a complication of life-threatening infections. Analyzing this cohort with reported patients revealed overall survival in 58% (11/19), which was higher in patients who underwent HSCT (P = 0.03). CONCLUSION: This cohort provides the largest analysis for clinical and immunological features of MALT1 deficiency. HSCT should be offered as a curative therapeutic option for all patients at the early stage of life.


Asunto(s)
Insuficiencia de Crecimiento , Trasplante de Células Madre Hematopoyéticas , Diarrea , Estudios de Asociación Genética , Humanos , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Fenotipo , Reinfección
17.
Mol Cancer Res ; 20(3): 373-386, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34753803

RESUMEN

MALT1 is the effector protein of the CARMA/Bcl10/MALT1 (CBM) signalosome, a multiprotein complex that drives pro-inflammatory signaling pathways downstream of a diverse set of receptors. Although CBM activity is best known for its role in immune cells, emerging evidence suggests that it plays a key role in the pathogenesis of solid tumors, where it can be activated by selected G protein-coupled receptors (GPCR). Here, we demonstrated that overexpression of GPCRs implicated in breast cancer pathogenesis, specifically the receptors for Angiotensin II and thrombin (AT1R and PAR1), drove a strong epithelial-to-mesenchymal transition (EMT) program in breast cancer cells that is characteristic of claudin-low, triple-negative breast cancer (TNBC). In concert, MALT1 was activated in these cells and contributed to the dramatic EMT phenotypic changes through regulation of master EMT transcription factors including Snail and ZEB1. Importantly, blocking MALT1 signaling, through either siRNA-mediated depletion of MALT1 protein or pharmacologic inhibition of its activity, was effective at partially reversing the molecular and phenotypic indicators of EMT. Treatment of mice with mepazine, a pharmacologic MALT1 inhibitor, reduced growth of PAR1+, MDA-MB-231 xenografts and had an even more dramatic effect in reducing the burden of metastatic disease. These findings highlight MALT1 as an attractive therapeutic target for claudin-low TNBCs harboring overexpression of one or more selected GPCRs. IMPLICATIONS: This study nominates a GPCR/MALT1 signaling axis as a pathway that can be pharmaceutically targeted to abrogate EMT and metastatic progression in TNBC, an aggressive form of breast cancer that currently lacks targeted therapies.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Línea Celular Tumoral , Movimiento Celular , Claudinas/farmacología , Claudinas/uso terapéutico , Transición Epitelial-Mesenquimal , Humanos , Ratones , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Receptor PAR-1/uso terapéutico , Neoplasias de la Mama Triple Negativas/metabolismo
18.
Sci Immunol ; 6(65): eabh2095, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767456

RESUMEN

Balanced control of T cell signaling is critical for adaptive immunity and protection from autoimmunity. By combining genetically engineered mouse models, biochemical analyses and pharmacological interventions, we describe an unexpected dual role of the tumor necrosis factor receptor­associated factor 6 (TRAF6) E3 ligase as both a positive and negative regulator of mucosa-associated lymphoid tissue 1 (MALT1) paracaspase. Although MALT1-TRAF6 recruitment is indispensable for nuclear factor κB signaling in activated T cells, TRAF6 counteracts basal MALT1 protease activity in resting T cells. In mice, loss of TRAF6-mediated homeostatic suppression of MALT1 protease leads to severe autoimmune inflammation, which is completely reverted by genetic or therapeutic inactivation of MALT1 protease function. Thus, TRAF6 functions as a molecular brake for MALT1 protease in resting T cells and a signaling accelerator for MALT1 scaffolding in activated T cells, revealing that TRAF6 controls T cell activation in a switch-like manner. Our findings have important implications for development and treatment of autoimmune diseases.


Asunto(s)
Homeostasis/inmunología , Inflamación/inmunología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/inmunología , Factor 6 Asociado a Receptor de TNF/inmunología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Factor 6 Asociado a Receptor de TNF/genética
19.
Methods Mol Biol ; 2366: 125-143, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34236636

RESUMEN

Jurkat T cells have been of central importance for the discovery of signalling mediators driving NF-κB activation in response to T cell antigen receptor (TCR)/CD28 co-stimulation. The critical function of the key regulators identified in Jurkat T cells has subsequently been verified in primary murine and human T cells. CRISPR/Cas9-mediated genomic editing techniques in combination with viral reconstitution are powerful tools that now enable the investigation of the exact molecular mechanisms that govern T cell signalling, especially the impact of protein-protein interactions, protein modifications, or cancer-associated gain- or loss-of-function mutations. As exemplified by the CARD11 gene encoding a key regulator of NF-κB signalling in T cells, we describe here the detailed workflow for the generation of CRISPR/Cas9 knockout (KO) Jurkat T cells and the subsequent reconstitution using a lentiviral transduction protocol. In addition, we explain the use of a stable NF-κB-dependent EGFP reporter system that enables a reliable quantification of NF-κB transcriptional activation in the reconstituted KO Jurkat T cells.


Asunto(s)
Leucemia de Células T/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Proteína 10 de la LLC-Linfoma de Células B , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Células HEK293 , Humanos , Células Jurkat , Ratones , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
20.
Expert Opin Ther Pat ; 31(12): 1079-1096, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34214002

RESUMEN

INTRODUCTION: MALT1 is the only human paracaspase, a protease with unique cleavage activity and substrate specificity. As a key regulator of immune responses, MALT1 has attracted attention as an immune modulatory target for the treatment of autoimmune/inflammatory diseases. Further, chronic MALT1 protease activation drives survival of lymphomas, suggesting that MALT1 is a suitable drug target for lymphoid malignancies. Recent studies have indicated that MALT1 inhibition impairs immune suppressive function of regulatory T cells in the tumor microenvironment, suggesting that MALT1 inhibitors may boost anti-tumor immunity in the treatment of solid cancers. AREAS COVERED: This review summarizes the literature on MALT1 patents and applications. We discuss the potential therapeutic uses for MALT1 inhibitors based on patents and scientific literature. EXPERT OPINION: There has been a steep increase in MALT1 inhibitor patents. Compounds with high selectivity and good bioavailability have been developed. An allosteric binding pocket is the preferred site for potent and selective MALT1 targeting. MALT1 inhibitors have moved to early clinical trials, but toxicological studies indicate that long-term MALT1 inhibition can disrupt immune homeostasis and lead to autoimmunity. Even though this poses risks, preventing immune suppression may favor the use of MALT1 inhibitors in cancer immunotherapies.


Asunto(s)
Inhibidores de Caspasas/farmacología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/antagonistas & inhibidores , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Inhibidores de Caspasas/efectos adversos , Desarrollo de Medicamentos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Patentes como Asunto , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...