Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34768869

RESUMEN

For twenty-five years, attempts have been made to use MSCs in the treatment of various diseases due to their regenerative and immunomodulatory properties. However, the results are not satisfactory. Assuming that MSCs can be replaced in some therapies by the active factors they produce, the immortalized MSCs line was established from human adipose tissue (HATMSC1) to produce conditioned media and test its regenerative potential in vitro in terms of possible clinical application. The production of biologically active factors by primary MSCs was lower compared to the HATMSC1 cell line and several factors were produced only by the cell line. It has been shown that an HATMSC1-conditioned medium increases the proliferation of various cell types, augments the adhesion of cells and improves endothelial cell function. It was found that hypoxia during culture resulted in an augmentation in the pro-angiogenic factors production, such as VEGF, IL-8, Angiogenin and MCP-1. The immunomodulatory factors caused an increase in the production of GM-CSF, IL-5, IL-6, MCP-1, RANTES and IL-8. These data suggest that these factors, produced under different culture conditions, could be used for different medical conditions, such as in regenerative medicine, when an increased concentration of pro-angiogenic factors may be beneficial, or in inflammatory diseases with conditioned media with a high concentration of immunomodulatory factors.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Medios de Cultivo Condicionados/farmacología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/metabolismo , Inductores de la Angiogénesis/metabolismo , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Cultivadas , Medios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Células Endoteliales/metabolismo , Humanos , Inmunomodulación , Inmunoterapia , Neovascularización Fisiológica/fisiología , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias
2.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830121

RESUMEN

Mesenchymal stem cells (MSCs) can improve chronic wound healing; however, recent studies suggest that the therapeutic effect of MSCs is mediated mainly through the growth factors and cytokines secreted by these cells, referred to as the MSC secretome. To overcome difficulties related to the translation of cell therapy into clinical use such as efficacy, safety and cost, we propose a hydrogel loaded with a secretome from the recently established human adipose tissue mesenchymal stem cell line (HATMSC2) as a potential treatment for chronic wounds. Biocompatibility and biological activity of hydrogel-released HATMSC2 supernatant were investigated in vitro by assessing the proliferation and metabolic activity of human fibroblast, endothelial cells and keratinocytes. Hydrogel degradation was measured using hydroxyproline assay while protein released from the hydrogel was assessed by interleukin-8 (IL-8) and macrophage chemoattractant protein-1 (MCP-1) ELISAs. Pro-angiogenic activity of the developed treatment was assessed by tube formation assay while the presence of pro-angiogenic miRNAs in the HATMSC2 supernatant was investigated using real-time RT-PCR. The results demonstrated that the therapeutic effect of the HATMSC2-produced factors is maintained following incorporation into collagen hydrogel as confirmed by increased proliferation of skin-origin cells and improved angiogenic properties of endothelial cells. In addition, HATMSC2 supernatant revealed antimicrobial activity, and which therefore, in combination with the hydrogel has a potential to be used as advanced wound-healing dressing.


Asunto(s)
Tejido Adiposo/citología , Medios de Cultivo Condicionados/farmacología , Hidrogeles/farmacología , Células Madre Mesenquimatosas/metabolismo , Secretoma/metabolismo , Piel/metabolismo , Antiinfecciosos/química , Antiinfecciosos/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Medios de Cultivo Condicionados/química , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/microbiología , Humanos , Hidrogeles/química , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/microbiología , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Piel/citología , Piel/microbiología
3.
Stem Cells Int ; 2020: 1289380, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612661

RESUMEN

Endothelial progenitor cells (EPCs) and mesenchymal stem/stromal cells (MSCs) are associated with maintaining tissue homeostasis and tissue repair. Both types of cells contribute to tissue regeneration through the secretion of trophic factors (alone or in the form of microvesicles). This study investigated the isolation and biological properties of microvesicles (MVs) derived from human immortalized MSC line HATMSC1 of adipose tissue origin and EPC line. The human immortalized cell line derived from the adipose tissue of a patient with venous stasis was established in our laboratory using the hTERT and pSV402 plasmids. The human EPC line originating from cord blood (HEPC-CB.1) was established in our previous studies. Microvesicles were isolated through a sequence of centrifugations. Analysis of the protein content of both populations of microvesicles, using the Membrane-Based Antibody Array and Milliplex ELISA showed that isolated microvesicles transported growth factors and pro- and antiangiogenic factors. Analysis of the miRNA content of isolated microvesicles revealed the presence of proangiogenic miRNA (miR-126, miR-296, miR-378, and miR-210) and low expression of antiangiogenic miRNA (miR-221, miR-222, and miR-92a) using real-time RT-PCR with the TaqMan technique. The isolated microvesicles were assessed for their effect on the proliferation and proangiogenic properties of cells involved in tissue repair. It was shown that both HEPC-CB.1- and HATMSC1-derived microvesicles increased the proliferation of human endothelial cells of dermal origin and that this effect was dose-dependent. In contrast, microvesicles had a limited impact on the proliferation of fibroblasts and keratinocytes. Both types of microvesicles improved the proangiogenic properties of human dermal endothelial cells, and this effect was also dose-dependent, as shown in the Matrigel assay. These results confirm the hypothesis that microvesicles of HEPC-CB.1 and HATMSC1 origin carry proteins and miRNAs that support and facilitate angiogenic processes that are important for cutaneous tissue regeneration.

4.
Pharmaceutics ; 12(4)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294908

RESUMEN

Cardiovascular diseases are the most distributed cause of death worldwide. Stenting of arteries as a percutaneous transluminal angioplasty procedure became a promising minimally invasive therapy based on re-opening narrowed arteries by stent insertion. In order to improve and optimize this method, many research groups are focusing on designing new or improving existent stents. Since the beginning of the stent development in 1986, starting with bare-metal stents (BMS), these devices have been continuously enhanced by applying new materials, developing stent coatings based on inorganic and organic compounds including drugs, nanoparticles or biological components such as genes and cells, as well as adapting stent designs with different fabrication technologies. Drug eluting stents (DES) have been developed to overcome the main shortcomings of BMS or coated stents. Coatings are mainly applied to control biocompatibility, degradation rate, protein adsorption, and allow adequate endothelialization in order to ensure better clinical outcome of BMS, reducing restenosis and thrombosis. As coating materials (i) organic polymers: polyurethanes, poly(ε-caprolactone), styrene-b-isobutylene-b-styrene, polyhydroxybutyrates, poly(lactide-co-glycolide), and phosphoryl choline; (ii) biological components: vascular endothelial growth factor (VEGF) and anti-CD34 antibody and (iii) inorganic coatings: noble metals, wide class of oxides, nitrides, silicide and carbide, hydroxyapatite, diamond-like carbon, and others are used. DES were developed to reduce the tissue hyperplasia and in-stent restenosis utilizing antiproliferative substances like paclitaxel, limus (siro-, zotaro-, evero-, bio-, amphi-, tacro-limus), ABT-578, tyrphostin AGL-2043, genes, etc. The innovative solutions aim at overcoming the main limitations of the stent technology, such as in-stent restenosis and stent thrombosis, while maintaining the prime requirements on biocompatibility, biodegradability, and mechanical behavior. This paper provides an overview of the existing stent types, their functionality, materials, and manufacturing conditions demonstrating the still huge potential for the development of promising stent solutions.

5.
Stem Cell Res Ther ; 11(1): 29, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964417

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) secrete a cocktail of growth factors and cytokines, which could promote tissue regeneration and wound healing. Therefore, in clinical practice, post-culture MSC supernatant treatment could be a more attractive alternative to autologous stem cell transplantation. In this study, we compared the regenerative properties of supernatants harvested from four newly established human adipose tissue mesenchymal stem cell lines (HATMSCs) derived from chronic wound patients or healthy donors. METHODS: HATMSC supernatants were produced in a serum-free medium under hypoxia and their content was analyzed by a human angiogenesis antibody array. The regenerative effect of HATMSCs supernatants was investigated in an in vitro model of chronic wound, where cells originating from human skin, such as microvascular endothelial cells (HSkMEC.2), keratinocytes (HaCaT), and fibroblasts (MSU-1.1), were cultured in serum-free and oxygen-reduced conditions. The effect of supernatant treatment was evaluated using an MTT assay and light microscopy. In addition, fibroblasts and HATMSCs were labeled with PKH67 and PKH26 dye, respectively, and the effect of supernatant treatment was compared to that obtained when fibroblasts and HATMSCs were co-cultured, using flow cytometry and fluorescent microscopy. RESULTS: A wide panel of angiogenesis-associated cytokines such as angiogenin, growth-regulated oncogene (GRO), interleukin-6 and 8 (IL-6, IL-8), vascular endothelial growth factor (VEGF), insulin growth factor 1 (IGF-1), and matrix metalloproteinase (MMP) were found in all tested HATMSCs supernatants. Moreover, supernatant treatment significantly enhanced the survival of fibroblasts, endothelial cells, and keratinocytes in our chronic wound model in vitro. Importantly, we have shown that in in vitro settings, HATMSC supernatant treatment results in superior fibroblast proliferation than in the case of co-culture with HATMSCs. CONCLUSIONS: Our results suggest that therapy based on bioactive factors released by the immortalized atMSC into supernatant has important effect on skin-derived cell proliferation and might preclude the need for a more expensive and difficult cell therapy approach to improve chronic wound healing.


Asunto(s)
Tejido Adiposo/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Mesenquimatosas/metabolismo , Cicatrización de Heridas/fisiología , Adulto , Anciano de 80 o más Años , Animales , Estudios de Casos y Controles , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones SCID , Transfección , Adulto Joven
6.
J Biomed Mater Res B Appl Biomater ; 108(1): 213-224, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30964600

RESUMEN

Rapid endothelialization of cardiovascular stents is critical to prevent major clinical complications such as restenosis. Reconstruction of the native endothelium on the stent surface can be achieved by the capture of endothelial progenitor cells (EPCs) or neighboring endothelial cells (ECs) in vivo. In this study, stainless steel cardiovascular stents were functionalized with recombinant scFv antibody fragments specific for vascular endothelial growth factor receptor-2 (VEGFR2) that is expressed on EPCs and ECs. Anti-VEGFR2 scFvs were expressed in glycosylated form in Escherichia coli and covalently attached to amine-functionalized, titania-coated steel disks and stents. ScFv-coated surfaces exhibited no detectable cytotoxicity to human ECs or erythrocytes in vitro and bound 15 times more VEGFR2-positive human umbilical vein ECs than controls after as little as 3 min. Porcine coronary arteries were successfully stented with scFv-coated stents with no adverse clinical events after 30 days. Endovascular imaging and histology revealed coverage of the anti-VEGFR2 scFv-coated stent with a cell layer after 5 days and the presence of a neointima layer with a minimum thickness of 80 µm after 30 days. Biofunctionalization of cardiovascular stents with endothelial cell-capturing antibody fragments in this manner offers promise in accelerating stent endothelialization in vivo. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:213-224, 2020.


Asunto(s)
Materiales Biocompatibles Revestidos/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Anticuerpos de Cadena Única/farmacología , Stents , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Línea Celular Transformada , Materiales Biocompatibles Revestidos/química , Humanos , Anticuerpos de Cadena Única/química , Sus scrofa
7.
Mater Sci Eng C Mater Biol Appl ; 99: 405-416, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30889715

RESUMEN

Stents are important medical devices used to increase the quality and life expectancy of patients with heart diseases and stroke, leading causes of death, worldwide. In order to minimize the risk of restenosis, different coating on bare metal stents (BMS) such as polymer coatings; titanium dioxide, titanium nitride or titanium oxynitride coatings; carbon coatings and others are used. The aim of this work was to develop novel stents coated with titanium oxynitride (TiOxNy) with optimal chemical, mechanical and biological properties having possibly good coverage rate of inner and outer stent surfaces. The improvement should be achieved by optimization and development of a magnetron sputtering deposition technology. The goal of the study is understanding of the existing potential for improvement of the deposition technology and the coating quality itself. For this study, different O2/N2 ratios, meaning 1/2, 1/5 and 1/10 (the ratios of reagent gasses are given for the values of mass flows into the chamber) has been selected. Stability in simulated body fluids, surface morphology and protein adsorption as well as preliminary cytotoxic behaviour of the samples on HUVEC cells has been analysed. SEM experiments have shown the potential in the improvement of coating-stent adhesion by all samples. TiOxNy 1:5 samples were found to have the lowest adsorption, the smoothest surface morphology and the smallest rate of salt deposition from simulated body fluids (SBFs). This kind of surface has been recommended for further optimization and application.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Stents , Titanio/farmacología , Corrosión , Técnicas Electroquímicas , Electrodos , Elementos Químicos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Plasma/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos X
8.
ACS Biomater Sci Eng ; 3(7): 1287-1295, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33440517

RESUMEN

Spinal cord injury (SCI) patients display varying quantities of spinal cord tissue damage with injuries that present as complete, incomplete or compressive. One theory proposed to repair the injured spinal cord and regain motor control is to regenerate axons through the lesion site. This study was designed to quantify the impact of a local injectable in situ forming hydrogel reservoir therapy following rat hemisection SCI. We investigated the effect of hydrogel only treatment following SCI in addition to hydrogels loaded with a neurotrophic factor, Neurotrophin-3 (NT-3), immediately following SCI. Functional recovery, assessed by Basso Beattie Bresnahan (BBB) locomotor test, and local healing mechanisms, including neuronal growth, glial scar formation, inflammation and collagen deposition were investigated one and 6 weeks postsurgery. Delivery of an injectable hydrogel significantly increased functional recovery at four and 6 weeks post injury. In addition, a significant reduction in the inhibitory glial scar and in inflammation was observed at the injury site. Similarly hydrogel + NT-3 delivered directly into the injury site significantly reduced glial scarring and collagen deposition. The hydrogel + NT-3 also resulted in a significant increase in neurons at 6 weeks post injury. This study represents a novel and effective therapy combining growth factor and a biomaterial based therapy following SCI.

9.
ACS Chem Neurosci ; 4(9): 1297-304, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-23763540

RESUMEN

Neurotrophins, as important regulators of neural development, function, and survival, have a therapeutic potential to repair damaged neurons. However, a controlled delivery of therapeutic molecules to injured tissue remains one of the greatest challenges facing the translation of novel drug therapeutics field. This study presents the development of an innovative protein-protein delivery technology of nerve growth factor (NGF) by an electrostatically assembled protein-based (collagen) reservoir system that can be directly injected into the injury site and provide long-term release of the therapeutic. A protein-based biomimetic hollow reservoir system was fabricated using a template method. The capability of neurotrophins to localize in these reservoir systems was confirmed by confocal images of fluorescently labeled collagen and NGF. In addition, high loading efficiency of the reservoir system was proven using ELISA. By comparing release profile from microspheres with varying cross-linking, highly cross-linked collagen spheres were chosen as they have the slowest release rate. Finally, biological activity of released NGF was assessed using rat pheochromocytoma (PC12) cell line and primary rat dorsal root ganglion (DRG) cell bioassay where cell treatment with NGF-loaded reservoirs induced significant neuronal outgrowth, similar to that seen in NGF treated controls. Data presented here highlights the potential of a high capacity reservoir-growth factor technology as a promising therapeutic treatment for neuroregenerative applications and other neurodegenerative diseases.


Asunto(s)
Microesferas , Factor de Crecimiento Nervioso/administración & dosificación , Neuronas/efectos de los fármacos , Animales , Células Cultivadas , Colágeno Tipo I , Portadores de Fármacos , Composición de Medicamentos , Evaluación Preclínica de Medicamentos , Ganglios Espinales/citología , Microscopía Confocal , Factor de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Células PC12 , Poliestirenos , Ratas , Electricidad Estática
10.
Trends Pharmacol Sci ; 33(2): 53-63, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22112465

RESUMEN

Stress to the endoplasmic reticulum (ER) is a recognized factor in Alzheimer's and Parkinson's diseases, diabetes, heart disease, liver disorders and cancer. Thus, drugs that interfere with ER stress have wide therapeutic potential. Here we review the effects of drugs on three arms of ER stress: the protein kinase RNA-activated (PKR)-like ER kinase (PERK) arm, the activated transcription factor 6 (ATF6) arm and the inositol-requiring enzyme 1 (IRE1) arm. Drugs fall into five groups: (i) compounds directly binding to ER stress molecules; (ii) chemical chaperones; (iii) inhibitors of protein degradation; (iv) antioxidants; (v) drugs affecting calcium signaling. Treatments are generally inhibitory and lead to increased viability, except when applied to cancer cells. A focus on interfering with the ATF6 arm is required, and more in vivo testing of these compounds concurrently across all three arms is needed if the full importance of ER stress to human disease is to be realized.


Asunto(s)
Estrés del Retículo Endoplásmico , Animales , Antioxidantes/farmacología , Señalización del Calcio , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Proteolisis
11.
J Neurosci Res ; 89(5): 661-73, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21337367

RESUMEN

The endoplasmic reticulum (ER) stress signaling pathway has been implicated in tissue injury in several rodent models of brain ischemia. To understand better the effects of ischemia on white matter in particular, we developed several in vitro models of hypoxia and ischemia in oligodendrocyte precursors. For the first time, we present data showing that exposure of rat oligodendrocyte precursor cells (OPCs) to cobalt chloride (CoCl(2)), antimycin A (AA), or oxygen, glucose and nutrient deprivation (OGND) causes up-regulation of glucose-regulated protein 78/B-cell immunoglobulin-binding protein (Grp78/BiP), C/EBP homologous binding protein (CHOP), and spliced X-box-binding protein 1 (XBP1). To mimic the effects of ischemia, OPCs supplemented with 5% normal growth medium and 95% Hank's balanced salt solution were incubated in a hypoxia chamber set at 0.1% oxygen. Because the toxic effects of AA on OPCs more closely resembled those seen when OPCs were subjected to OGND, we found AA treatment preferable to CoCl(2) as an in vitro model. To investigate the role of XBP1 in survival following an ischemic insult, we generated a stable XBP1 knockdown OPC cell line and subjected it to simulated hypoxia or ischemia. Surprisingly, 65% XBP1 knockdown had no effect on viability following chemical treatment or OGND. These data strengthen the case for targeting the ER stress signalling pathway in an effort to develop new early treatments for ischemic stroke patients but at the same time demonstrate that partial knockdown of XBP1 is not sufficient to protect precursor oligodendrocytes from ischemic damage.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Hipoxia-Isquemia Encefálica/genética , Degeneración Nerviosa/genética , Oligodendroglía/metabolismo , Interferencia de ARN , Células Madre/metabolismo , Factores de Transcripción/deficiencia , Animales , Animales Recién Nacidos , Línea Celular , Línea Celular Transformada , Supervivencia Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Oligodendroglía/patología , Interferencia de ARN/fisiología , Ratas , Ratas Endogámicas Lew , Factores de Transcripción del Factor Regulador X , Células Madre/patología , Factores de Transcripción/genética , Proteína 1 de Unión a la X-Box
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...