Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 11: 1372203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988985

RESUMEN

Porcine circoviruses (PCVs) are widely distributed in swine herds. PCV2, the significant swine pathogen, causes infections characterized by growth and development disorders, skin lesions, and respiratory distress. PCV3 has been circulating worldwide and can be associated with various clinical signs and disease developments. Wild boars are the main reservoir of these pathogens in wildlife and can create an alarming threat to pig farming. In Russia, three PCV2 genotypes (PCV2a, PCV2b, and PCV2d) were identified in pig farms. Additionally, PCV3 was observed in pig herds during the monitoring studies in the country. However, data considering the circulation of PCVs in herds of wild boars in Russia is scant. For this purpose, we performed PCR assays of the samples from 30 wild boars hunted in the Moscow Region of Russia in 2021-2023. The ratios of wild boars positive for PCV2, PCV3, or coinfected were 50, 10, and 13.3%, respectively. Additionally, we sequenced 15 PCV2 and four PCV3 complete genomes and conducted phylogenetic analysis, which divided PCV2 isolates into two groups: PCV2d and PCV2b. The study showed a high infection rate of PCV2 among wild boars, with PCV2d dominance. Simultaneously, PCV3 also circulates among wild boars. The obtained results can provide a basis for the development of preventive measures to support infection transmission risks between farm and wild animals.

2.
Vet Res Commun ; 48(1): 417-425, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37773486

RESUMEN

Porcine parvovirus 6 (PPV6) was first identified in aborted swine fetuses in China in 2014. Since its identification, an increased number of PPV6 cases have been reported in many countries with developed pig breeding. In this study, the first identification of porcine parvovirus 6 in Russia, its phylogenetic analysis, and its characterization in vitro are reported. During the investigation, 521 serum samples collected from pigs of different ages from seven regions of the Russian Federation were tested. In four regions, the DNA of the virus was detected. The overall prevalence of porcine parvovirus 6 in Russia was 9.4%. Fattening pigs were the group with the most frequent detection of the virus genome. Phylogenetic analysis of the Russian isolate detected in a domestic boar indicated high homology with strains from Spain. In vitro studies revealed that the most promising cell cultures for PPV6 isolation are SPEV and SK. Our results demonstrated that PPV6 induced typical apoptotic features in cells, including DNA fragmentation, chromatin margination, nuclear condensation, pyknosis of nuclei, symplast formation, and various pathological mitoses.


Asunto(s)
Infecciones por Parvoviridae , Parvovirus Porcino , Enfermedades de los Porcinos , Porcinos , Animales , Masculino , Parvovirus Porcino/genética , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/veterinaria , Filogenia , Enfermedades de los Porcinos/epidemiología , ADN
3.
Front Vet Sci ; 10: 1302531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116510

RESUMEN

During the last decade, porcine rotavirus H was detected in the USA, Asian regions, South Africa, Brazil, and a couple of European countries. In the presented study, the virus was identified in piglets on a farrow-to-finish farm in Russia during metagenomic surveillance. Currently, it is the first identification of this species in the country. As a diagnostic method, nanopore-based metagenomic sequencing was applied. The obtained nanopore reads allowed for the assembly of 10 genome segments out of 11. The phylogenetic analysis revealed the virus belonged to the porcine cluster and had GX-P3-I3-R3-C3-M8-A7-N1-T5-E3-H3 genome constellation. Moreover, three potential new genotype groups for VP3, NSP1, and NSP3 genes were determined. Additionally, a recombination between RVH and RVC in the NSP3 gene was detected. The study provides significant information about a novel RVH strain.

4.
Viruses ; 15(2)2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36851780

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) has a significant economic impact on pig farming worldwide by causing reproductive problems and affecting the respiratory systems of swine. In Eastern Europe, PRRSV-1 strains are characterized by high genetic variability, and pathogenicity differs among all known subtypes. This case study describes the detection of a wide pathogen spectrum, including the second subtype PRRSV-1, with a high mortality rate among nursery piglets (23.8%). This study was conducted at a farrow-to-finish farm in the Western Siberia region of Russia. Clinical symptoms included apathy, sneezing, and an elevation in body temperature, and during the autopsy, degenerative lesions in different tissues were observed. Moreover, 1.5 percent of the affected animals displayed clinical signs of the central nervous system and were characterized by polyserositis. Nasal swabs from diseased piglets and various tissue swabs from deceased animals were studied. For diagnostics, the nanopore sequencing method was applied. All the samples tested positive for PRRSV, and a more detailed analysis defined it as a second subtype of PRRSV-1. The results, along with the clinical picture, showed a complex disease etiology with the dominant role of PRRSV-1 and were informative about the high pathogenicity of the subtype in question under field conditions.


Asunto(s)
Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Siberia/epidemiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Federación de Rusia/epidemiología , Brotes de Enfermedades , Europa Oriental
5.
J Vet Sci ; 23(6): e92, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36448438

RESUMEN

BACKGROUND: Feline calicivirus (FCV) is widespread throughout the world. An FCV infection is associated with conjunctivitis, rhinitis, and mouth ulcers that can lead to the animal's death. Because vaccination is not always effective, it is necessary to monitor the infection regularly. OBJECTIVES: This study examined the FCV epizootic situation in the Moscow metropolitan area by conducting a molecular phylogenetic analysis of the virus isolates. METHODS: Samples from 6213 animals were examined by a reverse transcription polymerase chain reaction. For phylogenetic analysis, 12 nucleotide sequences obtained from animal samples were selected. Sequencing was performed using the Sanger method. Phylogenetic analysis was conducted using the Maximum Likelihood method. RESULTS: The FCV genome was detected in 1,596 (25.7%) samples out of 6,213. In 2018, calicivirus was detected in 18.9% of samples, 27.8% in 2019, 21.4% in 2020, and 32.6% in 2021. Phylogenetic analysis of the F ORF2 region and the ORF3 start region led to division into two FCV genogroups. Most of the isolates (8 out of 12) were close to the Chinese strains. On the other hand, there were isolates closely related to European and American strains. The isolates circulating in Moscow were not included in clusters with vaccine strains; their nucleotide similarity varied from 77% to 83%. CONCLUSIONS: This study revealed a high prevalence and genetic diversity of the FCV in Moscow. The epizootic situation remains stably tense because 24 viruses were detected in 25% of animals annually.


Asunto(s)
Calicivirus Felino , Animales , Gatos , Calicivirus Felino/genética , Moscú/epidemiología , Filogenia , Genotipo , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA