Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36077488

RESUMEN

Perturbations in striatal dopamine (DA) homeostasis might underlie the behavioral and pathobiological consequences of METH use disorder in humans. To identify potential consequences of long-term METH exposure, we modeled the adverse consequence DSM criterion of substance use disorders by giving footshocks to rats that had escalated their intake of METH during a drug self-administration procedure. Next, DA D1 receptor antagonist, SCH23390 was injected. Thereafter, rats were euthanized to measure several indices of the striatal dopaminergic system. Footshocks split the METH rats into two phenotypes: (i) shock-sensitive that decreased their METH-intake and (ii) shock-resistant that continued their METH intake. SCH23390 caused substantial dose-dependent reduction of METH taking in both groups. Stopping SCH23390 caused re-emergence of compulsive METH taking in shock-resistant rats. Compulsive METH takers also exhibited greater incubation of METH seeking than non-compulsive rats during withdrawal from METH SA. Analyses of DA metabolism revealed non-significant decreases (about 35%) in DA levels in resistant and sensitive rats. However, striatal contents of the deaminated metabolites, DOPAL and DOPAC, were significantly increased in sensitive rats. VMAT2 and DAT protein levels were decreased in both phenotypes. Moreover, protein expression levels of the D1-like DA receptor, D5R, and D2-like DA receptors, D3R and D4R, were significantly decreased in the compulsive METH takers. Our results parallel findings in post-mortem striatal tissues of human METH users who develop Parkinsonism after long-term METH intake and support the use of this model to investigate potential therapeutic interventions for METH use disorder.


Asunto(s)
Metanfetamina , Animales , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Antagonistas de Dopamina/farmacología , Humanos , Ratas , Ratas Sprague-Dawley , Autoadministración
2.
Transl Psychiatry ; 11(1): 65, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462194

RESUMEN

Novelty-seeking behaviors and impulsivity are personality traits associated with several psychiatric illnesses including attention deficits hyperactivity disorders. The underlying neural mechanisms remain poorly understood. We produced and characterized a line of knockout mice for zdhhc15, which encodes a neural palmitoyltransferase. Genetic defects of zdhhc15 were implicated in intellectual disability and behavioral anomalies in humans. Zdhhc15-KO mice showed normal spatial learning and working memory but exhibited a significant increase in novelty-induced locomotion in open field. Striatal dopamine content was reduced but extracellular dopamine levels were increased during the habituation phase to a novel environment. Administration of amphetamine and methylphenidate resulted in a significant increase in locomotion and extracellular dopamine levels in the ventral striatum of mutant mice compared to controls. Number and projections of dopaminergic neurons in the nigrostriatal and mesolimbic pathways were normal. No significant change in the basal palmitoylation of known ZDHHC15 substrates including DAT was detected in striatum of zdhhc15 KO mice using an acyl-biotin exchange assay. These results support that a transient, reversible, and novelty-induced elevation of extracellular dopamine in ventral striatum contributes to novelty-seeking behaviors in rodents and implicate ZDHHC15-mediated palmitoylation as a novel regulatory mechanism of dopamine in the striatum.


Asunto(s)
Anfetamina , Dopamina , Anfetamina/farmacología , Animales , Cuerpo Estriado/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Locomoción , Ratones , Ratones Noqueados
3.
Proc Natl Acad Sci U S A ; 116(18): 9066-9071, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30988198

RESUMEN

Substance use disorders (SUDs) impose severe negative impacts upon individuals, their families, and society. Clinical studies demonstrate that some chronic stimulant users are able to curtail their drug use when faced with adverse consequences while others continue to compulsively use drugs. The mechanisms underlying this dichotomy are poorly understood, which hampers the development of effective individualized treatments of a disorder that currently has no Food and Drug Administration-approved pharmacological treatments. In the present study, using a rat model of methamphetamine self-administration (SA) in the presence of concomitant foot shocks, thought to parallel compulsive drug taking by humans, we found that SA behavior correlated with alterations in the balance between an increased orbitofrontal cortex-dorsomedial striatal "go" circuit and a decreased prelimbic cortex-ventrolateral striatal "stop" circuit. Critically, this correlation was seen only in rats who continued to self-administer at a relatively high rate despite receiving foot shocks of increasing intensity. While the stop circuit functional connectivity became negative after repeated SA in all rats, "shock-resistant" rats showed strengthening of this negative connectivity after shock exposure. In contrast, "shock-sensitive" rats showed a return toward their baseline levels after shock exposure. These results may help guide novel noninvasive brain stimulation therapies aimed at restoring the physiological balance between stop and go circuits in SUDs.


Asunto(s)
Conducta Compulsiva/fisiopatología , Castigo/psicología , Trastornos Relacionados con Sustancias/psicología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Conectoma/métodos , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Electrochoque/métodos , Masculino , Metanfetamina/farmacología , Corteza Prefrontal/fisiopatología , Ratas , Ratas Sprague-Dawley , Autoadministración , Trastornos Relacionados con Sustancias/fisiopatología
4.
Sci Rep ; 7(1): 8331, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827541

RESUMEN

Methamphetamine addiction is mimicked in rats that self-administer the drug. However, these self-administration (SA) models do not include adverse consequences that are necessary to reach a diagnosis of addiction in humans. Herein, we measured genome-wide transcriptional consequences of methamphetamine SA and footshocks in the rat brain. We trained rats to self-administer methamphetamine for 20 days. Thereafter, lever-presses for methamphetamine were punished by mild footshocks for 5 days. Response-contingent punishment significantly reduced methamphetamine taking in some rats (shock-sensitive, SS) but not in others (shock-resistant, SR). Rats also underwent extinction test at one day and 30 days after the last shock session. Rats were euthanized one day after the second extinction test and the nucleus accumbens (NAc) and dorsal striatum were collected to measure gene expression with microarray analysis. In the NAc, there were changes in the expression of 13 genes in the SRvsControl and 9 genes in the SRvsSS comparison. In the striatum, there were 9 (6 up, 3 down) affected genes in the SRvsSS comparison. Among the upregulated genes was oxytocin in the NAc and CARTpt in the striatum of SR rats. These observations support a regional role of neuropeptides in the brain after a long withdrawal interval when animals show incubation of methamphetamine craving.


Asunto(s)
Metanfetamina/administración & dosificación , Núcleo Accumbens/efectos de los fármacos , Oxitocina/genética , Castigo , Transcriptoma/efectos de los fármacos , Trastornos Relacionados con Anfetaminas , Animales , Estimulantes del Sistema Nervioso Central/administración & dosificación , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Electrochoque , Masculino , Núcleo Accumbens/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Ratas Sprague-Dawley , Autoadministración
5.
Behav Brain Res ; 326: 265-271, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28284948

RESUMEN

Methamphetamine (METH) addicts lose control over drug consumption despite suffering multiple adverse medicolegal consequences. To mimic the negative events associated with drug addiction in humans, we recently introduced a rat model of self-administration (SA) with response-contingent punishment on METH intake. These procedures allowed us to distinguish between two addiction-like phenotypes in rats, those that sustained METH taking despite negative consequences (shock-resistant, SR) and rats that significantly reduced their METH intake (shock-sensitive, SS). Here, we further developed our adverse consequence model and examined incubation of METH craving by measuring cue-induced drug seeking in SR and SS rats. Male Sprague-Dawley rats were trained to self-administer METH (0.1mg/kg/injection) or saline intravenously (i.v.) during twenty-two 9-h sessions that consisted of 3 separate 3-h sessions separated by 30min. Subsequently, rats were subjected to incremental footshocks during thirteen additional 9-h METH SA sessions performed in a fashion identical to the training phase. Cue-induced drug craving was then assessed at 2 and 21days after the footshock phase. All rats escalated their intake of METH, with both phenotypes showing similar drug taking patterns during SA training. In addition, rats that continued their METH intake despite negative consequences showed even greater cue-induced drug craving following withdrawal than the rats that reduced METH intake following negative consequences. Taken together, our adverse consequence-based model highlights the possibility of identifying rats by addiction-like phenotypes and subsequent vulnerability to relapse-like behaviors. The use of similar SA models should help in the development of better therapeutic approaches to treat different stages of METH addiction.


Asunto(s)
Trastornos Relacionados con Anfetaminas/fisiopatología , Conducta Animal/fisiología , Estimulantes del Sistema Nervioso Central/farmacología , Ansia/fisiología , Señales (Psicología) , Metanfetamina/farmacología , Castigo , Trastornos Relacionados con Anfetaminas/clasificación , Animales , Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/administración & dosificación , Ansia/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Metanfetamina/administración & dosificación , Fenotipo , Ratas , Ratas Sprague-Dawley
6.
Sci Rep ; 6: 37002, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27841313

RESUMEN

Addiction is associated with neuroadaptive changes in the brain. In the present paper, we used a model of methamphetamine self-administration during which we used footshocks to divide rats into animals that continue to press a lever to get methamphetamine (shock-resistant) and those that significantly reduce pressing the lever (shock-sensitive) despite the shocks. We trained male Sprague-Dawley rats to self-administer methamphetamine (0.1 mg/kg/infusion) for 9 hours daily for 20 days. Control group self-administered saline. Subsequently, methamphetamine self-administration rats were punished by mild electric footshocks for 10 days with gradual increases in shock intensity. Two hours after stopping behavioral experiments, we euthanized rats and isolated nucleus accumbens (NAc) samples. Affymetrix Array experiments revealed 24 differentially expressed genes between the shock-resistant and shock-sensitive rats, with 15 up- and 9 downregulated transcripts. Ingenuity pathway analysis showed that these transcripts belong to classes of genes involved in nervous system function, behavior, and disorders of the basal ganglia. These genes included prodynorphin (PDYN) and proenkephalin (PENK), among others. Because PDYN and PENK are expressed in dopamine D1- and D2-containing NAc neurons, respectively, these findings suggest that mechanisms, which impact both cell types may play a role in the regulation of compulsive methamphetamine taking by rats.


Asunto(s)
Encefalinas/genética , Metanfetamina/farmacología , Núcleo Accumbens/metabolismo , Precursores de Proteínas/genética , Regulación hacia Arriba/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Electrochoque , Encefalinas/metabolismo , Masculino , Núcleo Accumbens/efectos de los fármacos , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Neurobiol Dis ; 91: 307-14, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26969530

RESUMEN

BACKGROUND: Toxoplasma gondii is a pathogen implicated in psychiatric disorders. As elevated antibodies to T. gondii are also present in non-symptomatic individuals, we hypothesized that the age during first exposure to the pathogen may affect symptom manifestation. We tested this hypothesis by evaluating neurobehavioral abnormalities and the immune response in mice following adolescent or adult T. gondii infection. METHODS: Mice were infected with T. gondii at postnatal day 33 (adolescent/juvenile) or 61 (adult). At 8weeks post-infection (wpi), pre-pulse inhibition of the acoustic startle (PPI) in mice administered MK-801 (0.1 and 0.3mg/kg) and amphetamine (5 and 10mg/kg) was assessed. Peripheral (anti-T. gondii, C1q-associated IgG and anti-GLUN2 antibodies) and central (C1q and Iba1) markers of the immune response were also evaluated. In addition, regional brain expression of N-methyl-d-aspartate receptor (NMDAR) subunits (GLUN1 and GLUN2A), glutamatergic (vGLUT1, PSD95) and GABAergic (GAD67) markers, and monoamines (DA, NE, 5-HT) and their metabolites were measured. RESULTS: Juvenile and adult infected mice exhibited opposite effects of MK-801 on PPI, with decreased PPI in juveniles and increased PPI in adults. There was a significantly greater elevation of GLUN2 autoantibodies in juvenile-compared to adult-infected mice. In addition, age-dependent differences were found in regional expression of NMDAR subunits and markers of glutamatergic, GABAergic, and monoaminergic systems. Activated microglia and C1q elevations were found in both juvenile- and adult-T. gondii infected mice. CONCLUSIONS: Our study demonstrates that the age at first exposure to T. gondii is an important factor in shaping distinct behavioral and neurobiological abnormalities. Elevation in GLUN2 autoantibodies or complement protein C1q may be a potential underlying mechanism. A better understanding of these age-related differences may lead to more efficient treatments of behavioral disorders associated with T. gondii infection.


Asunto(s)
Autoanticuerpos/inmunología , Encéfalo/patología , Encéfalo/parasitología , Trastornos Mentales/patología , Receptores de N-Metil-D-Aspartato/inmunología , Toxoplasma , Envejecimiento , Animales , Inmunoglobulina G/metabolismo , Masculino , Ratones Endogámicos BALB C , Toxoplasmosis
8.
Psychopharmacology (Berl) ; 233(10): 1945-62, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26873080

RESUMEN

RATIONALE AND OBJECTIVES: Addiction to psychostimulant methamphetamine (METH) remains a major public health problem in the world. Animal models that use METH self-administration incorporate many features of human drug-taking behavior and are very helpful in elucidating mechanisms underlying METH addiction. These models are also helping to decipher the neurobiological substrates of associated neuropsychiatric complications. This review summarizes our work on the influence of METH self-administration on dopamine systems, transcription and immune responses in the brain. METHODS: We used the rat model of METH self-administration with extended access (15 h/day for eight consecutive days) to investigate the effects of voluntary METH intake on the markers of dopamine system integrity and changes in gene expression observed in the brain at 2 h-1 month after cessation of drug exposure. RESULTS: Extended access to METH self-administration caused changes in the rat brain that are consistent with clinical findings reported in neuroimaging and postmortem studies of human METH addicts. In addition, gene expression studies using striatal tissues from METH self-administering rats revealed increased expression of genes involved in cAMP response element binding protein (CREB) signaling pathway and in the activation of neuroinflammatory response in the brain. CONCLUSION: These data show an association of METH exposure with activation of neuroplastic and neuroinflammatory cascades in the brain. The neuroplastic changes may be involved in promoting METH addiction. Neuroinflammatory processes in the striatum may underlie cognitive deficits, depression, and parkinsonism reported in METH addicts. Therapeutic approaches that include suppression of neuroinflammation may be beneficial to addicted patients.


Asunto(s)
Trastornos Relacionados con Anfetaminas/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Metanfetamina/farmacología , Trastornos Relacionados con Anfetaminas/etiología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratas
9.
Neurotox Res ; 30(1): 32-40, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26721795

RESUMEN

Methamphetamine (METH) administration alters gene expression in the nucleus accumbens (NAc). We recently demonstrated that an acute METH injection produced prolonged increases in the expression of immediate early genes in the NAc of HDAC2-deficient mice, suggesting that HDAC2 might be an important regulator of gene expression in the rodent brain. Here, we tested the possibility that HDAC2 deletion might also impact METH-induced changes in the expression of various HDAC classes in the NAc. Wild-type (WT) and HDAC2 knockout (KO) mice were given a METH (20 mg/kg) injection, and NAc tissue was collected at 1, 2, and 8 h post treatment. We found that METH decreased HDAC3, HDAC4, HDAC7, HDAC8, and HDAC11 mRNA expression but increased HDAC6 mRNA levels in the NAc of WT mice. In contrast, the METH injection increased HDAC3, HDAC4, HDAC7, HDAC8, and HDAC11 mRNA levels in HDAC2KO mice. These observations suggest that METH may induce large-scale transcriptional changes in the NAc by regulating the expression of several HDACs, in part, via HDAC2-dependent mechanisms since some of the HDACs showed differential responses between the two genotypes. Our findings further implicate HDACs as potential novel therapeutic targets for neurotoxic complications associated with the abuse of certain psychostimulants.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasa 2/fisiología , Metanfetamina/administración & dosificación , Metanfetamina/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Animales , Regulación Enzimológica de la Expresión Génica/genética , Histona Desacetilasa 2/biosíntesis , Histona Desacetilasa 2/genética , Masculino , Ratones , Ratones Noqueados , Regulación hacia Arriba/efectos de los fármacos
10.
Sci Rep ; 5: 13396, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26300473

RESUMEN

Methamphetamine (METH) produces increases in the expression of immediate early genes (IEGs) and of histone deacetylase 2 (HDAC2) in the rat nucleus accumbens (NAc). Here, we tested whether HDAC2 deletion influenced the effects of METH on IEG expression in the NAc. Microarray analyses showed no baseline differences in IEG expression between wild-type (WT) and HDAC2 knockout (KO) mice. Quantitative-PCR analysis shows that an acute METH injection produced time-dependent increases in mRNA levels of several IEGs in both genotypes. Interestingly, HDAC2KO mice displayed greater METH-induced increases in Egr1 and Egr2 mRNA levels measured at one hour post-injection. The levels of Fosb, Fra2, Egr1, and Egr3 mRNAs stayed elevated in the HDAC2KO mice 2 hours after the METH injection whereas these mRNAs had normalized in the WT mice. In WT mice, METH caused increased HDAC2 recruitment to the promoters some IEGs at 2 hours post injection. METH-induced prolonged increases in Fosb, Fra2, Egr1, and Egr3 mRNA levels in HDAC2KO mice were associated with increased enrichment of phosphorylated CREB (pCREB) on the promoters of these genes. Based on our observations, we hypothesize that HDAC2 may regulate the expression of these genes, in part, by prolonging the actions of pCREB in the mouse NAc.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Genes Inmediatos-Precoces , Histona Desacetilasa 2/deficiencia , Metanfetamina/farmacología , Núcleo Accumbens/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Histona Desacetilasa 2/metabolismo , Masculino , Ratones Noqueados , Núcleo Accumbens/efectos de los fármacos , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Factor de Transcripción AP-1/metabolismo
11.
Mol Neurobiol ; 51(2): 696-717, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24939695

RESUMEN

Methamphetamine use disorder is a chronic neuropsychiatric disorder characterized by recurrent binge episodes, intervals of abstinence, and relapses to drug use. Humans addicted to methamphetamine experience various degrees of cognitive deficits and other neurological abnormalities that complicate their activities of daily living and their participation in treatment programs. Importantly, models of methamphetamine addiction in rodents have shown that animals will readily learn to give themselves methamphetamine. Rats also accelerate their intake over time. Microarray studies have also shown that methamphetamine taking is associated with major transcriptional changes in the striatum measured within a short or longer time after cessation of drug taking. After a 2-h withdrawal time, there was increased expression of genes that participate in transcription regulation. These included cyclic AMP response element binding (CREB), ETS domain-containing protein (ELK1), and members of the FOS family of transcription factors. Other genes of interest include brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor, type 2 (TrkB), and synaptophysin. Methamphetamine-induced transcription was found to be regulated via phosphorylated CREB-dependent events. After a 30-day withdrawal from methamphetamine self-administration, however, there was mostly decreased expression of transcription factors including junD. There was also downregulation of genes whose protein products are constituents of chromatin-remodeling complexes. Altogether, these genome-wide results show that methamphetamine abuse might be associated with altered regulation of a diversity of gene networks that impact cellular and synaptic functions. These transcriptional changes might serve as triggers for the neuropsychiatric presentations of humans who abuse this drug. Better understanding of the way that gene products interact to cause methamphetamine addiction will help to develop better pharmacological treatment of methamphetamine addicts.


Asunto(s)
Conducta Adictiva/genética , Modelos Animales de Enfermedad , Epigénesis Genética/genética , Metanfetamina/administración & dosificación , Factores de Transcripción/genética , Animales , Conducta Adictiva/inducido químicamente , Epigénesis Genética/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Humanos , Ratas , Autoadministración , Factores de Tiempo
12.
Neuropsychopharmacology ; 39(8): 2008-16, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24584329

RESUMEN

In a rat model of drug craving and relapse, cue-induced drug seeking progressively increases after withdrawal from methamphetamine and other drugs, a phenomenon termed 'incubation of drug craving'. However, current experimental procedures used to study incubation of drug craving do not incorporate negative consequences of drug use, which is a common factor promoting abstinence in humans. Here, we studied whether incubation of methamphetamine craving is observed after suppression of drug seeking by adverse consequences (punishment). We trained rats to self-administer methamphetamine or palatable food for 9 h per day for 14 days; reward delivery was paired with a tone-light cue. Subsequently, for one group within each reward type, 50% of the lever-presses were punished by mild footshock for 9-10 days, whereas for the other group lever-presses were not punished. Shock intensity was gradually increased over time. Next, we assessed cue-induced reward seeking in 1-h extinction sessions on withdrawal days 2 and 21. Response-contingent punishment suppressed extended-access methamphetamine or food self-administration; surprisingly, food-trained rats showed greater resistance to punishment than methamphetamine-trained rats. During the relapse tests, both punished and unpunished methamphetamine- and food-trained rats showed significantly higher cue-induced reward seeking on withdrawal day 21 than on day 2. These results demonstrate that incubation of both methamphetamine and food craving occur after punishment-induced suppression of methamphetamine or palatable food self-administration. Our procedure can be used to investigate mechanisms of relapse to drug and palatable food seeking under conditions that more closely approximate the human condition.


Asunto(s)
Ansia/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Ingestión de Alimentos/psicología , Metanfetamina/toxicidad , Castigo , Recompensa , Animales , Señales (Psicología) , Estimulación Eléctrica , Masculino , Ratas , Ratas Sprague-Dawley
13.
PLoS One ; 9(1): e84665, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24475032

RESUMEN

Methamphetamine (METH) is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg) on transcriptional effects of a second METH (2.5 mg/kg) injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc) of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS) or METH-challenged (SM); and METH-pretreated followed by saline-challenged (MS) or METH-challenged (MM). Microarray analyses revealed that METH (2.5 mg/kg) produced acute changes (1.8-fold; P<0.01) in the expression of 412 (352 upregulated, 60 down-regulated) transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh), oxytocin (Oxt), and vasopressin (Avp) that were upregulated. Injection of METH (10 mg/kg) altered the expression of 503 (338 upregulated, 165 down-regulated) transcripts measured one month later (MS group). These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated) transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metanfetamina/farmacología , Núcleo Accumbens/metabolismo , Análisis de Varianza , Animales , Cromatografía Líquida de Alta Presión , Perfilación de la Expresión Génica , Masculino , Metanfetamina/administración & dosificación , Análisis por Micromatrices , Reacción en Cadena de la Polimerasa , Ratas
14.
Biol Psychiatry ; 76(1): 47-56, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24239129

RESUMEN

BACKGROUND: Chronic methamphetamine (METH) exposure causes neuroadaptations at glutamatergic synapses. METHODS: To identify the METH-induced epigenetic underpinnings of these neuroadaptations, we injected increasing METH doses to rats for 2 weeks and measured striatal glutamate receptor expression. We then quantified the effects of METH exposure on histone acetylation. We also measured METH-induced changes in DNA methylation and DNA hydroxymethylation. RESULTS: Chronic METH decreased transcript and protein expression of GluA1 and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) and GluN1 N-methyl-D-aspartate receptor subunits. These changes were associated with altered electrophysiological glutamatergic responses in striatal neurons. Chromatin immunoprecipitation-polymerase chain reaction revealed that METH decreased enrichment of acetylated histone H4 on GluA1, GluA2, and GluN1 promoters. Methamphetamine exposure also increased repressor element-1 silencing transcription factor (REST) corepressor 1, methylated CpG binding protein 2, and histone deacetylase 2 enrichment, but not of sirtuin 1 or sirtuin 2, onto GluA1 and GluA2 gene sequences. Moreover, METH caused interactions of REST corepressor 1 and methylated CpG binding protein 2 with histone deacetylase 2 and of REST with histone deacetylase 1. Surprisingly, methylated DNA immunoprecipitation and hydroxymethylated DNA immunoprecipitation-polymerase chain reaction revealed METH-induced decreased enrichment of 5-methylcytosine and 5-hydroxymethylcytosine at GluA1 and GluA2 promoter sequences. Importantly, the histone deacetylase inhibitor, valproic acid, blocked METH-induced decreased expression of AMPAR and N-methyl-D-aspartate receptor subunits. Finally, valproic acid also attenuated METH-induced decrease H4K16Ac recruitment on AMPAR gene sequences. CONCLUSIONS: These observations suggest that histone H4 hypoacetylation may be the main determinant of METH-induced decreased striatal glutamate receptor expression.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Metanfetamina/farmacología , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Acetilación/efectos de los fármacos , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Metilación de ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/antagonistas & inhibidores , Histona Desacetilasa 2/metabolismo , Histonas/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Receptores AMPA/biosíntesis , Receptores de N-Metil-D-Aspartato/biosíntesis , Proteínas Represoras/metabolismo , Sirtuina 1/metabolismo , Sirtuina 2/metabolismo , Ácido Valproico/farmacología
15.
Neurobiol Dis ; 58: 132-43, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23726845

RESUMEN

Neuroplastic changes in the dorsal striatum participate in the transition from casual to habitual drug use and might play a critical role in the development of methamphetamine (METH) addiction. We examined the influence of METH self-administration on gene and protein expression that may form substrates for METH-induced neuronal plasticity in the dorsal striatum. Male Sprague-Dawley rats self-administered METH (0.1mg/kg/injection, i.v.) or received yoked saline infusions during eight 15-h sessions and were euthanized 2h, 24h, or 1month after cessation of METH exposure. Changes in gene and protein expression were assessed using microarray analysis, RT-PCR and Western blots. Chromatin immunoprecipitation (ChIP) followed by PCR was used to examine epigenetic regulation of METH-induced transcription. METH self-administration caused increases in mRNA expression of the transcription factors, c-fos and fosb, the neurotrophic factor, Bdnf, and the synaptic protein, synaptophysin (Syp) in the dorsal striatum. METH also caused changes in ΔFosB, BDNF and TrkB protein levels, with increases after 2 and 24h, but decreases after 1month of drug abstinence. Importantly, ChIP-PCR showed that METH self-administration caused enrichment of phosphorylated CREB (pCREB), but not of histone H3 trimethylated at lysine 4 (H3K4me3), on promoters of c-fos, fosb, Bdnf and Syp at 2h after cessation of drug intake. These findings show that METH-induced changes in gene expression are mediated, in part, by pCREB-dependent epigenetic phenomena. Thus, METH self-administration might trigger epigenetic changes that mediate alterations in expression of genes and proteins serving as substrates for addiction-related synaptic plasticity.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Estimulantes del Sistema Nervioso Central/administración & dosificación , Cuerpo Estriado/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metanfetamina/administración & dosificación , Trastornos Relacionados con Sustancias/patología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Estimulantes del Sistema Nervioso Central/efectos adversos , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Dopamina/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/fisiología , Ácido Hidroxiindolacético/metabolismo , Masculino , Metanfetamina/efectos adversos , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Dopaminérgicos/metabolismo , Autoadministración , Serotonina/metabolismo , Trastornos Relacionados con Sustancias/etiología , Trastornos Relacionados con Sustancias/fisiopatología , Factores de Tiempo
16.
PLoS One ; 7(10): e46599, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056363

RESUMEN

Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4 × 5 mg/kg, i.p., 2 h apart) and modafinil co-administration (2 × 90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections) on glial cells (microglia and astroglia). We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum.


Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos de Bencidrilo/farmacología , Cuerpo Estriado/efectos de los fármacos , Inflamación/prevención & control , Metanfetamina/efectos adversos , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Fiebre/prevención & control , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Inflamación/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Modafinilo , Tirosina 3-Monooxigenasa/metabolismo
17.
Eur J Neurosci ; 36(6): 2773-81, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22762562

RESUMEN

Adult rats exposed to the DNA-methylating agent methylazoxymethanol on embryonic day 17 show a pattern of neurobiological deficits that model some of the neuropathological and behavioral changes observed in schizophrenia. Although it is generally assumed that these changes reflect targeted disruption of embryonic neurogenesis, it is unknown whether these effects generalise to other antimitotic agents administered at different stages of development. In the present study, neurochemical, behavioral and electrophysiological techniques were used to determine whether exposure to the antimitotic agent Ara-C later in development recapitulates some of the changes observed in methylazoxymethanol (MAM)-treated animals and in patients with schizophrenia. Male rats exposed to Ara-C (30 mg/kg/day) at embryonic days 19.5 and 20.5 show reduced cell numbers and heterotopias in hippocampal CA1 and CA2/3 regions, respectively, as well as cell loss in the superficial layers of the pre- and infralimbic cortex. Birth date labeling with bromodeoxyuridine reveals that the cytoarchitectural changes in CA2/3 are a consequence rather that a direct result of disrupted cortical neurogenesis. Ara-C-treated rats possess elevated levels of cortical dopamine and DOPAC (3,4-didyhydroxypheylacetic acid) but no change in norepinephrine or serotonin. Ara-C-treated rats are impaired in their ability to learn the Morris water maze task and showed diminished synaptic plasticity in the hippocampocortical pathway. These data indicate that disruption of neurogenesis at embryonic days 19.5 and 20.5 constitutes a useful model for the comparative study of deficits observed in other gestational models and their relationship to cognitive changes observed in schizophrenia.


Asunto(s)
Endofenotipos , Hipocampo/fisiopatología , Aprendizaje por Laberinto/efectos de los fármacos , Plasticidad Neuronal , Esquizofrenia/fisiopatología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Citarabina , Modelos Animales de Enfermedad , Dopamina/metabolismo , Hipocampo/embriología , Hipocampo/patología , Masculino , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Norepinefrina/metabolismo , Ratas , Ratas Sprague-Dawley , Esquizofrenia/inducido químicamente , Esquizofrenia/metabolismo , Esquizofrenia/patología , Serotonina/metabolismo
18.
Behav Brain Res ; 229(1): 265-72, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22285418

RESUMEN

Glutamate signaling has been implicated in the regulation of social behavior. AMPA-glutamate receptors are assembled from four subunits (GluA1-4) of mainly GluA1/2 and GluA2/3 tetramers that form ion channels of distinct functional properties. Mice lacking GluA1 showed a reduced anxiety and male aggression. To understand the role of GluA3 in modulating social behavior, we investigated GluA3-deficient mice (Gria3-/Y) on C57BL/6J background. Compared to wild type (WT) littermates (n=14), Gria3-/Y mice (n=13) showed an increase in isolation-induced male aggression (p=0.011) in home cage resident-intruder test; an increase in sociability (p=0.01), and increase in male-male social interactions in neutral arena (p=0.005); an increase in peripheral activities in open field test (p=0.037) with normal anxiety levels in elevated plus maze and light-dark box; and minor deficits in motor and balance function in accelerating rotarod test (p=0.016) with normal grip strength. Gria3-/Y mice showed no significant deficit in spatial memory function in Morris-water maze and Y-maze tests, and normal levels of testosterone. Increased dopamine concentrations in stratum (p=0.034) and reduced serotonin turnover in olfactory bulb (p=0.002) were documented in Gria3-/Y mice. These results support a role of GluA3 in the modulation of social behavior through brain dopamine and/or serotonin signaling and different AMPA receptor subunits affect social behavior through distinct mechanisms.


Asunto(s)
Agresión/fisiología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Receptores AMPA/deficiencia , Conducta Social , Ácido 3,4-Dihidroxifenilacético/metabolismo , Análisis de Varianza , Animales , Ansiedad/genética , Ansiedad/fisiopatología , Adaptación a la Oscuridad/genética , Conducta Exploratoria/fisiología , Fuerza de la Mano/fisiología , Ácido Homovanílico/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tiempo de Reacción/genética , Olfato/genética , Percepción Espacial/fisiología , Testosterona/sangre
19.
Neuropharmacology ; 62(3): 1242-51, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21315744

RESUMEN

Genetic factors involved in neuroplasticity have been implicated in major psychiatric illnesses such as schizophrenia, depression, and substance abuse. Given its extended interactome, variants in the Disrupted-In-Schizophrenia-1 (DISC1) gene could contribute to drug addiction and psychiatric diseases. Thus, we evaluated how dominant-negative mutant DISC1 influenced the neurobehavioral and molecular effects of methamphetamine (METH). Control and mutant DISC1 mice were studied before or after treatment with non-toxic escalating dose (ED) of METH. In naïve mice, we assessed METH-induced conditioned place preference (CPP), dopamine (DA) D2 receptor density and the basal and METH-induced activity of DISC1 partners, AKT and GSK-3ß in the ventral striatum. In ED-treated mice, 4 weeks after METH treatment, we evaluated fear conditioning, depression-like responses in forced swim test, and the basal and METH-induced activity of AKT and GSK-3ß in the ventral striatum. We found impairment in METH-induced CPP, decreased DA D2 receptor density and altered METH-induced phosphorylation of AKT and GSK-3ß in naïve DISC1 female mice. The ED regimen was not neurotoxic as evidenced by unaltered brain regional monoamine tissue content. Mutant DISC1 significantly delayed METH ED-produced sensitization and affected drug-induced phosphorylation of AKT and GSK-3ß in female mice. Our results suggest that perturbations in DISC1 functions in the ventral striatum may impact the molecular mechanisms of reward and sensitization, contributing to comorbidity between drug abuse and major mental diseases.


Asunto(s)
Condicionamiento Operante/efectos de los fármacos , Metanfetamina/farmacología , Mutación , Proteínas del Tejido Nervioso/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Comorbilidad , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Masculino , Trastornos Mentales/genética , Ratones , Ratones Transgénicos , Modelos Animales , Proteína Oncogénica v-akt/metabolismo , Fosforilación , Trastornos Relacionados con Sustancias/genética
20.
Dose Response ; 9(2): 165-81, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21731535

RESUMEN

Methamphetamine (METH) is a toxic drug of abuse, which can cause significant decreases in the levels of monoamines in various brain regions. However, animals treated with progressively increasing doses of METH over several weeks are protected against the toxic effects of the drug. In the present study, we tested the possibility that this pattern of METH injections might be associated with transcriptional changes in the rat striatum, an area of the brain which is known to be very sensitive to METH toxicity and which is protected by METH preconditioning. We found that the presence and absence of preconditioning followed by injection of large doses of METH caused differential expression in different sets of striatal genes. Quantitative PCR confirmed METH-induced changes in some genes of interest. These include small heat shock 27 kD proteins 1 and 2 (HspB1 and HspB2), brain derived neurotrophic factor (BDNF), and heme oxygenase-1 (Hmox-1). Our observations are consistent with previous studies which have reported that ischemic or pharmacological preconditioning can cause reprogramming of gene expression after lethal ischemic insults. These studies add to the growing literature on the effects of preconditioning on the brain transcriptome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA