Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35060903

RESUMEN

Understanding cortical microcircuits requires thorough measurement of physiological properties of synaptic connections formed within and between diverse subclasses of neurons. Towards this goal, we combined spatially precise optogenetic stimulation with multicellular recording to deeply characterize intralaminar and translaminar monosynaptic connections to supragranular (L2/3) neurons in the mouse visual cortex. The reliability and specificity of multiphoton optogenetic stimulation were measured across multiple Cre lines, and measurements of connectivity were verified by comparison to paired recordings and targeted patching of optically identified presynaptic cells. With a focus on translaminar pathways, excitatory and inhibitory synaptic connections from genetically defined presynaptic populations were characterized by their relative abundance, spatial profiles, strength, and short-term dynamics. Consistent with the canonical cortical microcircuit, layer 4 excitatory neurons and interneurons within L2/3 represented the most common sources of input to L2/3 pyramidal cells. More surprisingly, we also observed strong excitatory connections from layer 5 intratelencephalic neurons and potent translaminar inhibition from multiple interneuron subclasses. The hybrid approach revealed convergence to and divergence from excitatory and inhibitory neurons within and across cortical layers. Divergent excitatory connections often spanned hundreds of microns of horizontal space. In contrast, divergent inhibitory connections were more frequently measured from postsynaptic targets near each other.


Asunto(s)
Optogenética/métodos , Fotones , Corteza Visual Primaria/fisiología , Células Piramidales/fisiología , Transmisión Sináptica/fisiología , Corteza Visual/fisiología , Potenciales de Acción , Animales , Encéfalo/citología , Encéfalo/fisiología , Línea Celular , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Ratones , Reproducibilidad de los Resultados , Sinapsis/fisiología , Corteza Visual/citología
2.
Front Neural Circuits ; 11: 19, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28386219

RESUMEN

The neural cell adhesion molecule (NCAM), has been shown to be an obligate regulator of synaptic stability and pruning during critical periods of cortical maturation. However, the functional consequences of NCAM deletion on the organization of inhibitory circuits in cortex are not known. In vesicular gamma-amino butyric acid (GABA) transporter (VGAT)-channelrhodopsin2 (ChR2)-enhanced yellow fluorescent protein (EYFP) transgenic mice, NCAM is expressed postnatally at perisomatic synaptic puncta of EYFP-labeled parvalbumin, somatostatin and calretinin-positive interneurons, and in the neuropil in the anterior cingulate cortex (ACC). To investigate how NCAM deletion affects the spatial organization of inhibitory inputs to pyramidal cells, we used laser scanning photostimulation in brain slices of VGAT-ChR2-EYFP transgenic mice crossed to either NCAM-null or wild type (WT) mice. Laser scanning photostimulation revealed that NCAM deletion increased the strength of close-in inhibitory connections to layer 2/3 pyramidal cells of the ACC. In addition, in NCAM-null mice, the intrinsic excitability of pyramidal cells increased, whereas the intrinsic excitability of GABAergic interneurons did not change. The increase in inhibitory tone onto pyramidal cells, and the increased pyramidal cell excitability in NCAM-null mice will alter the delicate coordination of excitation and inhibition (E/I coordination) in the ACC, and may be a factor contributing to circuit dysfunction in diseases such as schizophrenia and bipolar disorder, in which NCAM has been implicated.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Giro del Cíngulo/fisiología , Moléculas de Adhesión de Célula Nerviosa/fisiología , Células Piramidales/fisiología , Animales , Giro del Cíngulo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Microscopía Confocal , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Células Piramidales/citología
3.
Artículo en Inglés | MEDLINE | ID: mdl-25972787

RESUMEN

Layer 4 (L4) of primary auditory cortex (A1) receives a tonotopically organized projection from the medial geniculate nucleus of the thalamus. However, individual neurons in A1 respond to a wider range of sound frequencies than would be predicted by their thalamic input, which suggests the existence of cross-frequency intracortical networks. We used laser scanning photostimulation and uncaging of glutamate in brain slices of mouse A1 to characterize the spatial organization of intracortical inputs to L4 neurons. Slices were prepared to include the entire tonotopic extent of A1. We find that L4 neurons receive local vertically organized (columnar) excitation from layers 2 through 6 (L6) and horizontally organized excitation primarily from L4 and L6 neurons in regions centered ~300-500 µm caudal and/or rostral to the cell. Excitatory horizontal synaptic connections from layers 2 and 3 were sparse. The origins of horizontal projections from L4 and L6 correspond to regions in the tonotopic map that are approximately an octave away from the target cell location. Such spatially organized lateral connections may contribute to the detection and processing of auditory objects with specific spectral structures.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Mapeo Encefálico , Neuronas/fisiología , Algoritmos , Animales , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Técnicas de Placa-Clamp
4.
Front Neuroinform ; 8: 3, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24523692

RESUMEN

The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA